Skip to main content

Abstract

The interaction between measures of weak noncompactness and fixed point theory is really strong and fruitful. In particular, measures of weak noncompactness play a significant role in topological fixed point problems. The purpose of this chapter is to exhibit the importance of the use of measures of weak noncompactness in topological fixed point theory and to demonstrate how the theory of measures of weak noncompactness will be applied in integral and partial differential equations. The theory of measures of weak noncompactness was initiated by De Blasi in the paper [28], where he introduced the first measure of weak noncompactness. De Blasi’s measure can be regarded as a counterpart of the classical Hausdorff measure of noncompactness. Unfortunately, it is not easy to construct formulas which allow to express the measure of weak noncompactness in a convenient form. For this reason, measures of weak noncompactness have been axiomatized [12] allowing thus several authors to construct measures of weak noncompactness in several Banach spaces [7, 11, 47, 48]. Measures of weak noncompactness have been successfully applied in operator theory, differential equations and integral equations. In particular, they enabled several authors to dispense with the lack of weak compactness in many practical situations. The material is far from exhausting the subject and basically we do not go into profound applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, R.P., O’Regan, D., Taoudi, M.-A.: Fixed point theorems for ws-compact mappings in Banach spaces. Fixed Point Theory Appl. 2010(183596), 13 (2010)

    Google Scholar 

  2. Agarwal, R.P., O’Regan, D., Taoudi, M.-A.: Browder-Krasnoselskii-type fixed point theorems in Banach spaces. Fixed Point Theory Appl. 2010(243716), 20 (2010)

    Google Scholar 

  3. Agarwal, R.P., O’Regan, D., Taoudi, M.-A.: Fixed point theorems for condensing multivalued mappings under weak topology features. Fixed Point Theory 12(2), 247–254 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Agarwal, R.P., O’Regan, D., Taoudi, M.-A.: Fixed point theorems for convexpower condensing operators relative to the weak topology and applications to Volterra integral equations. J. Int. Eq. Appl. 24(2), 167–181 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alekhno, E.A., Zabrejko, P.P.: On the weak continuity of the superposition operator in the space \(L_\infty \). Vestsi Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk 2, 17-23 (2005)

    Google Scholar 

  6. Ambrosetti, A.: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rendiconti del Seminario Matematico della Universita di Padova 39, 349361 (1967)

    MathSciNet  Google Scholar 

  7. Angosto, C., Cascales, B.: Measures of weak noncompactness in Banach spaces. Topology Appl. 156(7), 1412–1421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Appell, J., De Pascale, E.: Su alcuni parametri connessi con la misura di non compattezza di Hausdorff in spazi di funzioni misurabili, Boll. Un. Mat. Ital. B(6) 3, 497-515 (1984)

    Google Scholar 

  9. Arino, O., Gautier, S., Penot, J.P.: A fixed point theorem for sequentially continuous mappings with applications to ordinary differential equations. Funkc. Ekvac. 27, 273–279 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Banaś, J., Hajnosz, A., Wȩdrychowicz, S.: On the equation \(x^{\prime } =f(t,\, x)\) in Banach spaces. Comment Math. Univ. Carolin. 23(2), 233–247 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Banaś, J., Knap, Z.: Measure of weak noncompactness and nonlinear integral equations of convolution type. J. Math. Anal. Appl. 146, 353–362 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Banaś, J., Rivero, J.: On measures of weak noncompactness. Ann. Mat. Pura Appl. 151, 213–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Banaś, J., Taoudi, M.-A.: Fixed points and solutions of operator equations for the weak topology in Banach algebras. Taiwanese J. Math. 18(3), 871-893 (2014)

    Google Scholar 

  14. Barroso, C.S.: Krasnosel’skii’s fixed point theorem for weakly continuous maps. Nonlinear Analysis 55(1), 25–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Barroso, C.S., Teixeira, E.V.: A topological and geometric approach to fixed points results for sum of operators and applications. Nonlin. Anal. 60(4), 625–650 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Boudourides, M.A.: An existence theorem for ordinary differential equations in Banach spaces. Bull. Austral. Math. Soc. 22(03), 457–463 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burton, T.A.: Integral equations, implicit functions and fixed points. Proc. Amer. Math. Soc. 124, 2383–2390 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Burton, T.A.: A fixed point theorem of Krasnosel’skii. Appl. Math. Lett. 11, 85–88 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Burton, T.A., Furumochi, T.: Krasnosel’skii’s fixed point theorem and stability. Nonlin. Anal. 49, 445–454 (2002)

    Article  MATH  Google Scholar 

  20. Bellour, A., O’Regan, D., Taoudi, M.-A.: On the existence of integrable solutions for a nonlinear quadratic integral equation. J. Appl. Math. Comput. 46(1–2), 67–77 (2014)

    Google Scholar 

  21. Bellour, A., Bousselsal, M., Taoudi, M.-A.: Integrable solutions of a nonlinear integral equation related to some epidemic models. Glasnik Matematicki 49(69), 395406 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Ben Amar, A., Chouayekh, S., Jeribi, A.: New fixed point theorems in Banach algebras under weak topology features and applications to nonlinear integral equation. J. Funct. Anal. 259(9), 2215–2237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cardinali, T., Rubbioni, P.: Multivalued fixed point theorems in terms of weak topology and measure of weak noncompactness. J. Math. Anal. Appl. 405(2), 409–415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cichoń, M.: Weak solutions of differential equations in Banach spaces. Discuss. Math. Differential Incl. 15, 5–14 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Cichoń, M., Kubiaczyk, I.: Existence theorems for the Hammerstein integral equation. Discuss. Math. Differential Incl. 16, 171–177 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Cichoń, M.: On solutions of differential equations in Banach spaces. Nonlin. Anal. 60(4), 651–667 (2005)

    Article  MATH  Google Scholar 

  27. Daher, S.J.: On a fixed point principle of Sadovskii. Nonlinear Anal. 2(5), 643–645 (1978)

    Google Scholar 

  28. De Blasi, F.S.: On a property of the unit sphere in Banach spaces. Bull. Math. Soc. Sci. Math. Roumanie 21, 259–262 (1977)

    MathSciNet  MATH  Google Scholar 

  29. Diestel, J.: A survey of results related to the Dunford-Pettis property. Contemp. Math. 2, 15–60 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Djebali, S., Sahnoun, Z.: Nonlinear alternatives of Schauder and Krasnosel’skij types with applications to Hammerstein integral equations in \(L^1\) spaces. J. Differential Equations 249(9), 2061–2075 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Djebali, S.: Fixed point theory for 1-set contractions: a survey. In: Applied Mathematics in Tunisia, 53–100, Springer Proc. Math. Stat., 131, Springer, Cham, 2015

    Google Scholar 

  32. Dhage, B.C.: Remarks on two fixed point theorems involving the sum and the product of two operators. Comp. Math. Appl. 46, 1779–1785 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dhage, B.C.: On a fixed point theorem in Banach algebras with applications. Appl. Math. Lett. 18, 273–280 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dobrakov, I.: On representation of linear operators on \(C_0(T, X)\). Czech. Math. J. 21, 13–30 (1971)

    MATH  Google Scholar 

  35. Dunford, N., J.T. Schwartz, J.T.: Linear Operators, Part I: General Theory. Interscience Publishers, New York (1958)

    Google Scholar 

  36. Garcia-Falset, J.: Existence of fixed points and measure of weak noncompactness. Nonlin. Anal. 71, 2625–2633 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Garcia-Falset, J.: Existence of fixed points for the sum of two operators. Math. Nachr. 283(12), 1736–1757 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Garcia-Falset, J., Latrach, K.: Krasnoselskii-type fixed-point theorems for weakly sequentially continuous map. Bull. Lond. Math. Soc. 44, 2538 (2012)

    Article  MATH  Google Scholar 

  39. Garcia-Falset, J., Latrach, K., Moreno-Galvez, E., Taoudi, M.-A.: Schaefer-Krasnoselskii fixed point theorems using a usual measure of weak noncompactness. J. Differential Equations 252(5), 3436–3452 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Garcia-Falset, J., Muniz-Perez, O.: Fixed point theory for 1-set contractive and pseudocontractive mappings. Appl. Math. Comp. 219, 6843–6855 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Geitz, R.F.: Pettis integration. Proc. Amer. Math. Soc. 82, 81–86 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Grothendieck, A.: Espaces Vectroiels Topologiques. Sociedade de Matematica de Sao Paulo, Sao Paulo (1958)

    Google Scholar 

  43. Hencl, S., Kolar, J., Pangrac, O.: Integral functionals that are continuous with respect to the weak topology on \(W_0^{1,p}(0,1)\). Nonlin. Anal. 63, 81–87 (2005)

    Google Scholar 

  44. Hussain, N., Taoudi, M.-A.: Krasnosel’skii-type fixed point theorems with applications to Volterra integral equations. Fixed Point Theory Appl. 2013, 196.27 (2013)

    Google Scholar 

  45. Krasnosel’skii, M.A., Zabrejko, P.P., Pustyl’nik, J.I., Sobolevskii, P.J.: Integral Operators in Spaces of Summable Functions. Noordhoff, Leyden (1976)

    Book  Google Scholar 

  46. Krasnosel’skii, M.A.: On the continuity of the operator \(Fu(x)=f(x, u(x))\). Dokl. Akad. Nauk. SSSR 77, 185–188 (1951)

    MathSciNet  Google Scholar 

  47. Kryczka, A., Prus, S., Szczepanik, M.: Measure of weak noncompactness and real interpolation of operators. Bull. Austr. Math Soc. 62, 389–401 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kryczka, A., Prus, S.: Measure of weak noncompactness under complex interpolation. Studia Math. 147, 89–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kubiaczyk, I., Szufla, S.: Kneser’s theorem for weak solutions of ordinary differential equations in Banach spaces. Publ. Inst. Math. (Beograd) 46, 99–103 (1982)

    MathSciNet  MATH  Google Scholar 

  50. Latrach, K., Mokhtar-Kharroubi, M.; On an unbounded linear operator arising in the theory of growing cell population. J. Math. Anal. Appl. 211(1), 273–294 (1997)

    Google Scholar 

  51. Latrach, K., Taoudi, M.-A., Zeghal, A.: Some fixed point theorems of the Schauder and Krasnosel’skii type and application to nonlinear transport equations. J. Differential Equations 221(1), 256–271 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Latrach, K., Taoudi, M.-A.: Existence results for a generalized nonlinear Hammerstein equation on \(L^1\)-spaces. Nonlin. Anal. 66, 2325–2333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Le Dret, H.: Equations aux Dérivées Partielles Elliptiques. Springer (2013)

    Google Scholar 

  54. Liu, L., Guo, F., Wu, C., Wu, Y.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces. J. Math. Anal. Appl. 309(2), 638–649 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mitchell, A.R., Smith, C.K.L: An existence theorem for weak solutions of differential equations in Banach spaces. In: Lakshmikantham, V. (ed.) Nonlinear Equations in Abstract Spaces, pp. 387–404. Academic Press (1978)

    Google Scholar 

  56. O’Regan, D.: Integral equations in reflexive Banach spaces and weak topologies. Proc. Amer. Math. Soc. 124, 607–614 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  57. O’Regan, D.: Fixed point theory for weakly sequentially continuous mappings. Math. Comput. Modelling 27(5), 1–14 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  58. O’Regan, D.: Operator equations in Banach spaces relative to the weak topology. Arch. Math. 71, 123–136 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  59. O’Regan, D.: Weak solutions of ordinary differential equations in Banach spaces. Appl. Math. Lett. 12, 101–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  60. O’Regan, D., Taoudi, M.-A.: Fixed point theorems for the sum of two weakly sequentially continuous mappings. Nonlin. Anal. 73, 283–289 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Papageorgiou, N.S.: Weak solutions of differential equations in Banach spaces. Bull. Austral. Math. Soc. 33, 407–418 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  62. Radstrom, H.: An embedding theorem for spaces of convex sets. Proc. Amer. Math. Soc. 3, 165–169 (1952)

    Article  MathSciNet  Google Scholar 

  63. Roubicek, T.: Nonlinear Partial Differential Equations with Applications. Birkhuser Verlag Basel, Boston, Berlin (2005)

    MATH  Google Scholar 

  64. Ryan, R.: Dunford-Pettis properties. Bull. Acad. Polon. Sci. Math. 27, 373–379 (1979)

    MathSciNet  MATH  Google Scholar 

  65. Salhi, N., Taoudi, M.-A.: Existence of integrable solutions of an integral equation of Hammerstein type on an unbounded interval. Mediterr. J. Math. doi:10.1007/s00009-011-0147-3 (2011)

  66. Scorza Dragoni, G.: Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad unaltru variabili. Red. Sem. Mat. Univ. Padova 17, 102–106 (1948)

    MATH  Google Scholar 

  67. Shragin, V.I.: On the weak continuity of the Nemytskii operator. Uchen. Zap. Mosk. Obl. Ped. Inst. 75, 73–79 (1957)

    Google Scholar 

  68. Taoudi, M.-A.: Integrable solutions of a nonlinear functional integral equation on an unbounded interval. Nonlin. Anal. 71, 4131–4136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  69. Taoudi, M.-A.: Krasnosel’skii type fixed point theorems under weak topology features. Nonlin. Anal. doi:10.1016/j.na.2009.06.086 (2009)

  70. Taoudi, M.-A., Salhi, N., Ghribi, B.: Integrable solutions of a mixed type operator equation. Appl. Math. Comput. 216(4), 1150–1157 (2010)

    MathSciNet  MATH  Google Scholar 

  71. Taoudi, M.-A., Xiang, T.: Weakly noncompact fixed point results of the Schauder and the Krasnoselskii type. Mediterr. J. Math. 11(2), 667–685 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhang, G., Zhang, T., Zhang, T.: Fixed point theorems of Rothe and Altman types about convex-power condensing operator and application. Appl. Math. Comput. 214, 618–623 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed-Aziz Taoudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chlebowicz, A., Taoudi, MA. (2017). Measures of Weak Noncompactness and Fixed Points. In: Banaś, J., Jleli, M., Mursaleen, M., Samet, B., Vetro, C. (eds) Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness. Springer, Singapore. https://doi.org/10.1007/978-981-10-3722-1_6

Download citation

Publish with us

Policies and ethics