Skip to main content

Hormonal Responses to a Potential Mate in Male Birds

  • Chapter
  • First Online:
Avian Reproduction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1001))

Abstract

Social interactions rapidly modulate circulating hormone levels and behavioral patterns in most male animals. In male birds, sexual interaction or visual exposure to a conspecific female usually causes an increase in the levels of peripheral reproductive hormones, such as gonadotropins and androgens. Although the perception of a female presence is processed in the brain and peripheral hormonal levels are regulated by the hypothalamus–pituitary–gonadal (HPG) axis, the specific neural circuitry and neurochemical systems that translate social signals into reproductive physiology in male birds were not well understood until 2008. Today, there is growing evidence that two neuropeptides localized in the hypothalamus, gonadotropin-releasing hormone and gonadotropin-inhibitory hormone, are responsive to social information. These two neuropeptides have thus begun to be regarded as modulators translating social stimuli into changes in the levels of peripheral reproductive hormones. Here, we review previous studies that investigated the male responses of the HPG axis to the mere presence of a female or to sexual interaction, and describe the neurochemical pathways linking visual perception of a potential mate to rapid peripheral hormonal changes via the brain–pituitary endocrine system in sexually mature male Japanese quail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Matsui S, Watanabe D. Transgenic songbirds with suppressed or enhanced activity of CREB transcription factor. Proc Natl Acad Sci U S A. 2015;112(24):7599–604. doi:10.1073/pnas.1413484112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agate RJ, Scott BB, Haripal B, Lois C, Nottebohm F. Transgenic songbirds offer an opportunity to develop a genetic model for vocal learning. Proc Natl Acad Sci U S A. 2009;106(42):17963–7. doi:10.1073/pnas.0909139106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball GF. The neural integration of environmental information by seasonally breeding birds. Am Zool. 1993;33:185–99.

    Article  Google Scholar 

  • Balthazart J, Evrard L, Surlemont C. Effects of the nonsteroidal inhibitor R76713 on testosterone-induced sexual behavior in the Japanese quail (Coturnix coturnix japonica). Horm Behav. 1990a;24(4):510–31.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Foidart A, Surlemont C, Vockel A, Harada N. Distribution of aromatase in the brain of the Japanese quail, ring dove, and zebra finch: an immunocytochemical study. J Comp Neurol. 1990b;301(2):276–88.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Absil P, Foidart A, Houbart M, Harada N, Ball GF. Distribution of aromatase-immunoreactive cells in the forebrain of zebra finches (Taeniopygia guttata): implications for the neural action of steroids and nuclear definition in the avian hypothalamus. J Neurobiol. 1996;31(2):129–48.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Baillien M, Charlier TD, Ball GF. Calcium-dependent phosphorylation processes control brain aromatase in quail. Eur J Neurosci. 2003;17(8):1591–606. doi:10.1046/j.1460-9568.2003.02598.x.

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Baillien M, Ball GF. Rapid control of brain aromatase activity by glutamatergic inputs. Endocrinology. 2006;147(1):359–66. doi:10.1210/en.2005-0845.

    Article  CAS  PubMed  Google Scholar 

  • Bentley GE, Perfito N, Ukena K, Tsutsui K, Wingfield JC. Gonadotropin-inhibitory peptide in song sparrows (Melospiza melodia) in different reproductive conditions, and in house sparrows (Passer domesticus) relative to chicken-gonadotropin-releasing hormone. J Neuroendocrinol. 2003;15(8):794–802.

    Article  CAS  PubMed  Google Scholar 

  • Burger JW. The effect of photic stimuli on the reproductive cycle of the male starling, Sturnus vulgaris. J Exp Zool. 1953;124:227–39.

    Article  Google Scholar 

  • Burmeister SS, Wilczynski W. Social signals regulate gonadotropin-releasing hormone neurons in the green treefrog. Brain Behav Evol. 2005;65(1):26–32. doi:10.1159/000081108.

    Article  PubMed  Google Scholar 

  • Burmeister SS, Jarvis ED, Fernald RD. Rapid behavioral and genomic responses to social opportunity. PLoS Biol. 2005;3(11):e363. doi:10.1371/journal.pbio.0030363.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calisi RM, Diaz-Munoz SL, Wingfield JC, Bentley GE. Social and breeding status are associated with the expression of GnIH. Genes Brain Behav. 2011;10(5):557–64. doi:10.1111/j.1601-183X.2011.00693.x.

    Article  CAS  PubMed  Google Scholar 

  • Charlier TD, Ball GF, Balthazart J. Sexual behavior activates the expression of the immediate early genes c-fos and Zenk (egr-1) in catecholaminergic neurons of male Japanese quail. Neuroscience. 2005;131(1):13–30. doi:10.1016/j.neuroscience.2004.09.068.

    Article  CAS  PubMed  Google Scholar 

  • Charlier TD, Harada N, Balthazart J, Cornil CA. Human and quail aromatase activity is rapidly and reversibly inhibited by phosphorylating conditions. Endocrinology. 2011;152(11):4199–210. doi:10.1210/en.2011-0119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornil CA, Dalla C, Papadopoulou-Daifoti Z, Baillien M, Dejace C, Ball GF, Balthazart J. Rapid decreases in preoptic aromatase activity and brain monoamine concentrations after engaging in male sexual behavior. Endocrinology. 2005;146(9):3809–20. doi:10.1210/en.2005-0441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornil CA, Dalla C, Papadopoulou-Daifoti Z, Baillien M, Balthazart J. Estradiol rapidly activates male sexual behavior and affects brain monoamine levels in the quail brain. Behav Brain Res. 2006;166(1):110–23.

    Article  CAS  PubMed  Google Scholar 

  • Cornil CA, Stevenson TJ, Ball GF. Are rapid changes in gonadal testosterone release involved in the fast modulation of brain estrogen effects? Gen Comp Endocrinol. 2009;163(3):298–305. doi:10.1016/j.ygcen.2009.04.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bournonville C, Dickens MJ, Ball GF, Balthazart J, Cornil CA. Dynamic changes in brain aromatase activity following sexual interactions in males: where, when and why? Psychoneuroendocrinology. 2013;38(6):789–99. doi:10.1016/j.psyneuen.2012.09.001.

    Article  PubMed  Google Scholar 

  • Decourt C, Tillet Y, Caraty A, Franceschini I, Briant C. Kisspeptin immunoreactive neurons in the equine hypothalamus interactions with GnRH neuronal system. J Chem Neuroanat. 2008;36(3-4):131–7.

    Article  CAS  PubMed  Google Scholar 

  • Dellovade TL, Rissman EF. Gonadotropin-releasing hormone-immunoreactive cell numbers change in response to social interactions. Endocrinology. 1994;134(5):2189–97.

    Article  CAS  PubMed  Google Scholar 

  • Delville Y, Sulon J, Hendrick JC, Balthazart J. Effect of the presence of females on the pituitary-testicular activity in male Japanese quail (Coturnix coturnix japonica). Gen Comp Endocrinol. 1984;55:295–305.

    Article  CAS  PubMed  Google Scholar 

  • Deregnaucourt S. Interspecific hybridization as a tool to understand vocal divergence: the example of crowing in quail (Genus Coturnix). PLoS One. 2010;5(2):e9451. doi:10.1371/journal.pone.0009451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Domjan M, Nash S. Stimulus control of social behaviour in male Japanese quail, Coturnix coturnix japonica. Anim Behav. 1988;36:1006–15.

    Article  Google Scholar 

  • Dufty AM, Wingfield JC. The influence of social cues on the reproductive endocrinology of male brown-headed cowbirds: field and laboratory studies. Horm Behav. 1986;20:222–34.

    Article  CAS  PubMed  Google Scholar 

  • Eens M, Pinxten R, Verheyen RF. On the function of singing and wing-waving in the European starling Sturnus vulgaris. Bird Study. 1990;37(1):48–52. doi:10.1080/00063659009477038.

    Article  Google Scholar 

  • Eens M, Pinxten R, Verheyen RF. Male song as a cue for mate choice in the European starling. Behaviour. 1991;116:210–38.

    Article  Google Scholar 

  • Ernst DK, Bentley GE. Neural and neuroendocrine processing of a non-photic cue in an opportunistically-breeding songbird. J Exp Biol. 2016; doi:10.1242/jeb.126987.

  • Feder HH, Storey A, Goodwin SD, Reboulleau C, Silver R. Testosterone and “5α-dihydrotestosterone” levels in peripheral plasma of male and female ring Doves (Streptopelia risoria) during the reproductive cycle. Biol Reprod. 1977;16:666–77.

    Article  CAS  PubMed  Google Scholar 

  • Fusani L, Gahr M, Hutchison JB. Aromatase inhibition reduces specifically one display of the ring dove courtship behavior. Gen Comp Endocrinol. 2001;122(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  • Gleason ED, Marler CA. Testosterone response to courtship predicts future paternal behavior in the California mouse, Peromyscus californicus. Horm Behav. 2010;57(2):147–54. doi:10.1016/j.yhbeh.2009.10.006.

    Article  CAS  PubMed  Google Scholar 

  • Goodson JL, Adkins-Regan E. Playback of crows of male Japanese quail elicits female phonotaxis. Condor. 1997;99:990–3.

    Article  Google Scholar 

  • Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. 2004;145(9):4073–7.

    Article  CAS  PubMed  Google Scholar 

  • Haase B, Paulke E, Sharp PJ. Effects of seasonal and social factors on testicular activity and hormone levels in domestic pigeons. J Exp Zool. 1976;197:81–8.

    Article  CAS  PubMed  Google Scholar 

  • Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology. 2004;80(4):264–72.

    Article  CAS  PubMed  Google Scholar 

  • Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem. 2001;276(37):34631–6.

    Article  CAS  PubMed  Google Scholar 

  • Kriegsfeld LJ, Ubuka T, Bentley GE, Tsutsui K. Seasonal control of gonadotropin-inhibitory hormone (GnIH) in birds and mammals. Front Neuroendocrinol. 2015;37:65–75. doi:10.1016/j.yfrne.2014.12.001.

    Article  CAS  PubMed  Google Scholar 

  • Lambert GM, Rubin BS, Baum MJ. Sexual dimorphism in the effects of mating on the in vitro release of LHRH from the ferret mediobasal hypothalamus. Physiol Behav. 1992;52(4):809–13.

    Article  CAS  PubMed  Google Scholar 

  • Lehrman DS. The reproductive behavior of ring doves. Sci Am. 1964;211:48–54.

    Article  CAS  PubMed  Google Scholar 

  • Liu WC, Kohn J, Szwed SK, Pariser E, Sepe S, Haripal B, Oshimori N, Marsala M, Miyanohara A, Lee R. Human mutant huntingtin disrupts vocal learning in transgenic songbirds. Nat Neurosci. 2015;18(11):1617–22. doi:10.1038/nn.4133.

    Article  CAS  PubMed  Google Scholar 

  • MacDougall-Shackleton SA, Stevenson TJ, Watts HE, Pereyra ME, Hahn TP. The evolution of photoperiod response systems and seasonal GnRH plasticity in birds. Integr Comp Biol. 2009;49(5):580–9. doi:10.1093/icb/icp048.

    Article  CAS  PubMed  Google Scholar 

  • Maney DL, Goode CT, Lake JI, Lange HS, O’Brien S. Rapid neuroendocrine responses to auditory courtship signals. Endocrinology. 2007;148(12):5614–23. doi:10.1210/en.2007-0879.

    Article  CAS  PubMed  Google Scholar 

  • Mantei KE, Ramakrishnan S, Sharp PJ, Buntin JD. Courtship interactions stimulate rapid changes in GnRH synthesis in male ring doves. Horm Behav. 2008;54(5):669–75. doi:10.1016/j.yhbeh.2008.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruska KP, Fernald RD. Social regulation of gene expression in the hypothalamic–pituitary–gonadal axis. Physiology (Bethesda). 2011;26(6):412–23. doi:10.1152/physiol.00032.2011.

    Article  CAS  Google Scholar 

  • Meddle SL, King VM, Follett BK, Wingfield JC, Ramenofsky M, Foidart A, Balthazart J. Copulation activates Fos-like immunoreactivity in the male quail forebrain. Behav Brain Res. 1997;85(2):143–59.

    Article  CAS  PubMed  Google Scholar 

  • Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MBL, Colledge WH, Caraty A, Aparicio SAJR. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci U S A. 2005;102(5):1761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P, Steplewski K, Shabon U, Miller JE, Middleton SE, Darker JG, Larminie CG, Wilson S, Bergsma DJ, Emson P, Faull R, Philpott KL, Harrison DC. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem. 2001;276(31):28969–75.

    Article  CAS  PubMed  Google Scholar 

  • O’Connell M, Reboulleau C, Feder H, Silvers R. Social interactions and androgen levels in birds I. Female characteristics associated with increased plasma androgen levels in the male ring dove (Streptopelia risoria). Gen Comp Endocrinol. 1981;44:454–63.

    Article  PubMed  Google Scholar 

  • Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001;411(6837):613–7.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RF. Social modulation of androgens in vertebrates: mechanisms and function. Adv Study Behav. 2004;34:165–239.

    Article  Google Scholar 

  • Oliveira RF. Social behavior in context: hormonal modulation of behavioral plasticity and social competence. Integr Comp Biol. 2009;49(4):423–40. doi:10.1093/icb/icp055.

    Article  PubMed  Google Scholar 

  • Ottinger MA, Bakst MR. Endocrinology of the avian reproductive system. J Avian Med Surg. 1995;9(4):242–50.

    Google Scholar 

  • Parhar I, Ogawa S, Kitahashi T. RFamide peptides as mediators in environmental control of GnRH neurons. Prog Neurobiol. 2012;98(2):176–96.

    Article  CAS  PubMed  Google Scholar 

  • Pinxten R, de Ridder E, Eens M. Female presence affects male behavior and testosterone levels in the European starling (Sturnus vulgaris). Horm Behav. 2003;44(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  • Remage-Healey L, Maidment NT, Schlinger BA. Forebrain steroid levels fluctuate rapidly during social interactions. Nat Neurosci. 2008;11(11):1327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts TF, Gobes SM, Murugan M, Olveczky BP, Mooney R. Motor circuits are required to encode a sensory model for imitative learning. Nat Neurosci. 2012;15(10):1454–9. doi:10.1038/nn.3206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scanes CG. Avian endocrine system. In: Scanes C, editor. Sturkie’s avian physiology. 6th ed. Amsterdam: Academic Press; 2015. p. 489–96.

    Chapter  Google Scholar 

  • Schlinger BA, Arnold AP. Brain is the major site of estrogen synthesis in a male songbird. Proc Natl Acad Sci U S A. 1991;88:4191–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JSJ, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MBL, Crowley WFJ, Aparicio SAJR, Colledge WH. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349(17):1614–27.

    Article  CAS  PubMed  Google Scholar 

  • Shinomiya A, Shimmura T, Nishiwaki-Ohkawa T, Yoshimura T. Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone. Front Endocrinol (Lausanne). 2014;5:12. doi:10.3389/fendo.2014.00012.

    Google Scholar 

  • Silver R, Goldsmith AR, Follett BK. Plasma luteinizing hormone in male ring doves during the breeding cycle. Gen Comp Endocrinol. 1980;42:19–24.

    Article  CAS  PubMed  Google Scholar 

  • Steimer T, Hutchison JB. Aromatization of testosterone within a discrete hypothalamic area associated with the behavioral action of androgen in the male dove. Brain Res Bull. 1980;192:586–91.

    Article  CAS  Google Scholar 

  • Stevenson TJ, Ball GF. Anatomical localization of the effects of reproductive state, castration, and social milieu on cells immunoreactive for gonadotropin-releasing hormone-I in male European starlings (Sturnus vulgaris). J Comp Neurol. 2009;517:146–55.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson TJ, Hahn TP, MacDougall-Shackleton SA, Ball GF. Gonadotropin-releasing hormone plasticity: A comparative perspective. Front Neuroendocrinol. 2012;33(3):287–300. doi:10.1016/j.yfrne.2012.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teruyama R, Beck MM. Changes in immunoreactivity to anti-cGnRH-I and -II are associated with photostimulated sexual status in male quail. Cell Tissue Res. 2000;300(3):413–26.

    Article  CAS  PubMed  Google Scholar 

  • Tobari Y, Iijima N, Tsunekawa K, Osugi T, Okanoya K, Tsutsui K, Ozawa H. Identification of gonadotropin-inhibitory hormone in the zebra finch (Taeniopygia guttata): Peptide isolation, cDNA cloning and brain distribution. Peptides. 2010;31:816–26.

    Article  CAS  PubMed  Google Scholar 

  • Tobari Y, Son YL, Ubuka T, Hasegawa Y, Tsutsui K. A new pathway mediating social effects on the endocrine system: female presence acting via norepinephrine release stimulates gonadotropin-inhibitory hormone in the paraventricular nucleus and suppresses luteinizing hormone in quail. J Neurosci. 2014;34(29):9803–11. doi:10.1523/JNEUROSCI.3706-13.2014.

    Article  PubMed  Google Scholar 

  • Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun. 2000;275(2):661–7.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui K, Ubuka T, Son YL, Bentley GE, Kriegsfeld LJ. Contribution of GnIH research to the progress of reproductive neuroendocrinology. Front Endocrinol (Lausanne). 2015;6:179. doi:10.3389/fendo.2015.00179.

    Google Scholar 

  • Ubuka T, Ueno M, Ukena K, Tsutsui K. Developmental changes in gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica) hypothalamo–hypophysial system. J Endocrinol. 2003;178(2):311–8.

    Article  CAS  PubMed  Google Scholar 

  • Ubuka T, Bentley GE, Ukena K, Wingfield JC, Tsutsui K. Melatonin induces the expression of gonadotropin-inhibitory hormone in the avian brain. Proc Natl Acad Sci U S A. 2005;102(8):3052–7. doi:10.1073/pnas.0403840102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubuka T, Kim S, Huang YC, Reid J, Jiang J, Osugi T, Chowdhury VS, Tsutsui K, Bentley GE. Gonadotropin-inhibitory hormone neurons interact directly with gonadotropin-releasing hormone-I and -II neurons in European starling brain. Endocrinology. 2008;149(1):268–78.

    Article  CAS  PubMed  Google Scholar 

  • Ukena K, Ubuka T, Tsutsui K. Distribution of a novel avian gonadotropin-inhibitory hormone in the quail brain. Cell Tissue Res. 2003;312(1):73–9.

    CAS  PubMed  Google Scholar 

  • Ullrich R, Norton P, Scharff C. Waltzing Taeniopygia: integration of courtship song and dance in the domesticated Australian zebra finch. Anim Behav. 2016;112:285–300.

    Article  Google Scholar 

  • Um HN, Han JM, Hwang JI, Hong SI, Vaudry H, Seong JY. Molecular coevolution of kisspeptins and their receptors from fish to mammals. Ann N Y Acad Sci. 2010;1200:67–74. doi:10.1111/j.1749-6632.2010.05508.x.

    Article  CAS  PubMed  Google Scholar 

  • Wade J. Zebra finch sexual differentiation: the aromatization hypothesis revisited. Microsc Res Tech. 2001;54:354–63.

    Article  CAS  PubMed  Google Scholar 

  • Watson JT, Adkins-Regan E. Testosterone implanted in the preoptic area of male Japanese quail must be aromatized to activate copulation. Horm Behav. 1989;23(3):432–47.

    Article  CAS  PubMed  Google Scholar 

  • Wingfield JC. Environmental and endocrine control of reproduction: an ecological approach. In: Mikami S, Homma K, Wada M, editors. Avian endocrinology. Tokyo: Japan Scientific Societies Press; 1983. p. 265–88.

    Google Scholar 

  • Yin H, Ukena K, Ubuka T, Tsutsui K. A novel G protein-coupled receptor for gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica): identification, expression and binding activity. J Endocrinol. 2005;184(1):257–66. doi:10.1677/joe.1.05926.

    Article  CAS  PubMed  Google Scholar 

  • Youngren O, Chaiseha Y, Phillips R, El Halawani M. Vasoactive intestinal peptide concentrations in turkey hypophysial portal blood differ across the reproductive cycle. Gen Comp Endocrinol. 1996;103:323–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuko Tobari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tobari, Y., Sato, Y., Okanoya, K. (2017). Hormonal Responses to a Potential Mate in Male Birds. In: Sasanami, T. (eds) Avian Reproduction. Advances in Experimental Medicine and Biology, vol 1001. Springer, Singapore. https://doi.org/10.1007/978-981-10-3975-1_9

Download citation

Publish with us

Policies and ethics