Skip to main content

T-Cell Abnormalities

  • Chapter
  • First Online:
Autoimmune Thrombocytopenia
  • 686 Accesses

Abstract

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by increased platelet destruction and reduced platelet production caused primarily by IgG antiplatelet autoantibodies, which mainly target platelet membrane glycoproteins (GPs), including GPIIb/IIIa and GPIb/IX. GPIIb/IIIa-reactive CD4+ T cells play a central role in the pathogenic process by triggering and maintaining antiplatelet autoantibodies. The mechanism for ongoing antiplatelet antibody production is explained by a “pathogenic loop” model consisting of macrophages in the reticuloendothelial system, GPIIb/IIIa-reactive CD4+ T cells, and B cells producing antiplatelet antibodies. Among T helper (Th) cell subsets, Th1 and Th17 cells as well as newly identified T follicular helper (Tfh) cells, which support B cell maturation and differentiation within the germinal center, are actively involved in antiplatelet antibody production. Finally, platelet-reactive CD8+ cytotoxic T cells directly induce lysis and apoptosis of circulating platelets as well as megakaryocytes. On the other hand, CD4+ regulatory T cells (Tregs), which contribute to maintenance of peripheral immune tolerance, are defective in patients with ITP, through decreased numbers and impaired function of Tregs. In fact, mice lacking Foxp3 Tregs spontaneously develop chronic thrombocytopenia mediated through the production of IgG antiplatelet autoantibodies. Further studies evaluating mechanisms for T-cell dysregulation are useful in elucidating the pathogenesis of ITP and in developing novel treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cines DB, Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med. 2002;346:995–1008.

    Article  PubMed  Google Scholar 

  2. McMillan R. Autoantibodies and autoantigens in chronic immune thrombocytopenic purpura. Semin Hematol. 2000;37:239–48.

    Article  CAS  PubMed  Google Scholar 

  3. Semple JW, Provan D. The immunopathogenesis of immune thrombocytopenia: T cells still take center-stage. Curr Opin Hematol. 2012;19:357–62.

    Article  CAS  PubMed  Google Scholar 

  4. Audia S, Rossato M, Santegoets K, et al. Splenic TFH expansion participates in B-cell differentiation and antiplatelet-antibody production during immune thrombocytopenia. Blood. 2014;124:2858–66.

    Article  CAS  PubMed  Google Scholar 

  5. Kuwana M, Kaburaki J, Ikeda Y. Autoreactive T cells to platelet GPIIb-IIIa in immune thrombocytopenic purpura. Role in production of anti-platelet autoantibody. J Clin Invest. 1998;102:1393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Olsson B, Andersson PO, Jernas M, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med. 2003;9:1123–4.

    Article  CAS  PubMed  Google Scholar 

  7. Ma L, Simpson E, Li J, et al. CD8+ T cells are predominantly protective and required for effective steroid therapy in murine models of immune thrombocytopenia. Blood. 2015;126:247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nishimoto T, Kuwana M. CD4+CD25+Foxp3+ regulatory T cells in the pathophysiology of immune thrombocytopenia. Semin Hematol. 2013;1:S43–9.

    Article  Google Scholar 

  9. Kuwana M, Kawakami Y, Ikeda Y. Suppression of autoreactive T-cell response to glycoprotein IIb/IIIa by blockade of CD40/CD154 interaction: implications for treatment of immune thrombocytopenic purpura. Blood. 2003;101:621–3.

    Article  CAS  PubMed  Google Scholar 

  10. Meabed MH, Taha GM, Mohamed SO, et al. Autoimmune thrombocytopenia: flow cytometric determination of platelet-associated CD154/CD40L and CD40 on peripheral blood T and B lymphocytes. Hematology. 2007;12:301–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kuwana M, Okazaki Y, Ikeda Y. Splenic macrophages maintain the anti-platelet autoimmune response via uptake of opsonized platelets in patients with immune thrombocytopenic purpura. J Thromb Haemost. 2009;7:322–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kuwana M, Okazaki Y, Kaburaki J, et al. Spleen is a primary site for activation of platelet-reactive T and B cells in patients with immune thrombocytopenic purpura. J Immunol. 2002;168:3675–82.

    Article  CAS  PubMed  Google Scholar 

  13. Daridon C, Loddenkemper C, Spieckermann S, et al. Splenic proliferative lymphoid nodules distinct from germinal centers are sites of autoantigen stimulation in immune thrombocytopenia. Blood. 2012;120:5021–31.

    Article  CAS  PubMed  Google Scholar 

  14. Mahévas M, Patin P, Huetz F, et al. B cell depletion in immune thrombocytopenia reveals splenic long-lived plasma cell. J Clin Invest. 2013;123:432–42.

    Article  PubMed  Google Scholar 

  15. Asahi A, Nishimoto T, Okazaki Y, et al. Helicobacter pylori eradication shifts monocytes Fcγ receptor balance toward inhibitory FcγRIIB in immune thrombocytopenic purpura patients. J Clin Invest. 2008;118:2939–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lui XG, Liu S, Feng Q, et al. Thrombopoietin receptor agonists shift the balance of Fcγ receptors toward inhibitory receptor IIb on monocytes in ITP. Blood. 2016;128:852–61.

    Article  Google Scholar 

  17. Sakaguchi S, Miyara M, Costantino CM, et al. Foxp3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10:490–500.

    Article  CAS  PubMed  Google Scholar 

  18. Buckner JH. Mechanisms of impaired regulation by CD4+CD25+Foxp3+ regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10:849–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Audia S, Samson M, Guy J, et al. Immunologic effects of rituximab on the human spleen in immune thrombocytopenia. Blood. 2011;118:4394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olsson B, Ridell B, Carlsson L, et al. Recruitment of T cells into bone marrow of ITP patients possibly due to elevated expression of VLA-4 and CX3CR1. Blood. 2008;112:1078–84.

    Article  CAS  PubMed  Google Scholar 

  21. Song Y, Wang YT, Huang XJ, et al. Abnormalities of the bone marrow immune microenvironment in patients with immune thrombocytopenia. Ann Hematol. 2016;95:959–65.

    Article  PubMed  Google Scholar 

  22. Bao W, Bussel JB, Heck S, et al. Improved regulatory T-cell activity in patients with chronic immune thrombocytopenia treated with thrombopoietic agents. Blood. 2010;116:4639–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu B, Zhao H, Poon MC, et al. Abnormality of CD4(+)CD25(+) regulatory T cells in idiopathic thrombocytopenic purpura. Eur J Haematol. 2007;78:139–43.

    CAS  PubMed  Google Scholar 

  24. Stasi R, Cooper N, Del Poeta G, et al. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood. 2008;112:1147–50.

    Article  CAS  PubMed  Google Scholar 

  25. Yu J, Heck S, Patel V, et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood. 2008;112:1325–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ling Y, Cao X, Yu Z, et al. Circulating dendritic cells subsets and CD4+Foxp3+ regulatory T cells in adult patients with chronic ITP before and after treatment with high-dose dexamethasome. Eur J Haematol. 2007;79:310–6.

    Article  CAS  PubMed  Google Scholar 

  27. Nishimoto T, Satoh T, Takeuchi T, et al. Critical role of CD4(+)CD25(+) regulatory T cells in preventing murine autoantibody-mediated thrombocytopenia. Exp Hematol. 2012;40:279–89.

    Article  CAS  PubMed  Google Scholar 

  28. Nishimoto T, Satoh T, Simpson EK, et al. Predominant autoantibody response to GPIb/IX in a regulatory T-cell-deficient mouse model for immune thrombocytopenia. J Thromb Haemost. 2013;11:369–72.

    Article  CAS  PubMed  Google Scholar 

  29. Nishimoto T, Numajiri M, Nakazaki H, et al. Induction of immune tolerance to platelet antigen by short-term thrombopoietin treatment in a mouse model of immune thrombocytopenia. Int J Hematol. 2014;100:341–4.

    Article  CAS  PubMed  Google Scholar 

  30. González-López TJ, Pascual C, Álvarez-Román MT, et al. Successful discontinuation of eltrombopag after complete remission in patients with primary immune thrombocytopenia. Am J Hematol. 2015;90:E40–3.

    Article  PubMed  Google Scholar 

  31. Chow L, Aslam R, Speck ER, et al. A murine model of severe immune thrombocytopenia is induced by antibody- and CD8+ T cell-mediated responses that are differentially sensitive to therapy. Blood. 2010;115:1247–53.

    Article  CAS  PubMed  Google Scholar 

  32. Aslam R, Hu Y, Gebremeskel S, et al. Thymic retention of CD4+CD25+Foxp3+ T regulatory cells is associated with their peripheral deficiency and thrombocytopenia in a murine model of immune thrombocytopenia. Blood. 2012;120:2127–32.

    Article  CAS  PubMed  Google Scholar 

  33. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014;41:529–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Craft JE. Follicular helper T cells in immunity and systemic autoimmunity. Nat Rev Rheumatol. 2012;8:337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma CS, Deenick EK. Human T follicular helper (Tfh) cells and disease. Immunol Cell Biol. 2014;92:64–71.

    Article  CAS  PubMed  Google Scholar 

  36. Xie J, Cui D, Liu Y, et al. Changes in follicular helper T cells in idiopathic thrombocytopenic purpura patients. Int J Biol Sci. 2015;11:220–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yao X, Li C, Yang J, et al. Differences in frequency and regulation of T follicular helper cells between newly diagnosed and chronic pediatric immune thrombocytopenia. Blood Cells Mol Dis. 2016;61:26–36.

    Article  CAS  PubMed  Google Scholar 

  38. Jernas M, Nookaew I, Wadenvik H, et al. MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP). Blood. 2013;121:2095–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li JQ, Hu SY, Wang ZY, et al. MicroRNA-125-5p targeted CXCL13: a potential biomarker associated with immune thrombocytopenia. Am J Transl Res. 2015b;15:772–80.

    Article  CAS  Google Scholar 

  40. Li S, Wang L, Zhao C, et al. CD8+ T cells suppress autologous megakaryocyte apoptosis in idiopathic thrombocytopenic purpura. Br J Haematol. 2007;139:605–11.

    Article  PubMed  Google Scholar 

  41. Guo L, Kapur R, Aslam R, et al. CD20+ B-cell depletion therapy suppresses murine CD8+ T-cell-mediated immune thrombocytopenia. Blood. 2016;127:735–8.

    Article  CAS  PubMed  Google Scholar 

  42. Li J, van der Wal DE, Zhu G, et al. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat Commun. 2015a;6:7737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qiu J, Liu X, Li X, et al. CD8(+) T cells induce platelet clearance in the liver via platelet desialylation in immune thrombocytopenia. Sci Rep. 2016;6:27445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou H, Qiu JH, Wang T, et al. Interleukin 27 inhibits cytotoxic T-lymphocyte-mediated platelet destruction in primary immune thrombocytopenia. Blood. 2014;124:3316–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu L, Cantor H. Generation and regulation of CD8(+) regulatory T cells. Cell Mol Immunol. 2008;5:401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsai YG, Yang KD, Niu DM, et al. TLR2 agonists enhance CD8+Foxp3 regulatory T cells and suppress Th2 immune responses during allergen immunotherapy. J Immunol. 2010;184:7229–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We dedicate this chapter to the late Tetsuya Nishimoto, who had contributed to elucidation of autoimmune mechanisms of ITP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Satoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Satoh, T., Kuwana, M. (2017). T-Cell Abnormalities. In: Ishida, Y., Tomiyama, Y. (eds) Autoimmune Thrombocytopenia . Springer, Singapore. https://doi.org/10.1007/978-981-10-4142-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4142-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4141-9

  • Online ISBN: 978-981-10-4142-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics