Skip to main content

Production of Ethanol from Lignocellulosic Biomass

  • Chapter
  • First Online:
Production of Platform Chemicals from Sustainable Resources

Part of the book series: Biofuels and Biorefineries ((BIOBIO))

Abstract

Ethanol fuel is leading the transition towards a post-petrol era in the transport sector worldwide. Ethanol is produced via sugar fermentation processes by yeasts or bacteria. Although the current industrial production of ethanol mainly involves the use of starch- and sugar-based feedstocks, lignocellulosic biomass is expected to play a key role as renewable, carbohydrate-rich raw material. With the aim of placing lignocellulosic ethanol into the market, the scientific community has made great efforts to develop and implement efficient conversion technologies. Prior to fermentation, lignocellulosic biomass must be pretreated and hydrolysed to obtain the fermentable sugars. Biomass processing is, however, a major limiting step since it is hindered by the native structure of lignocellulose and generates different biomass-derived compounds that are inhibitors of the subsequent microbial conversion. In this context, different pretreatment, delignification and detoxification methods have been investigated to produce less inhibitory pretreated materials. Furthermore, several strategies such as working at high gravity conditions, high temperatures and/or different process configurations, have been shown to maximize ethanol production from lignocellulosic materials. The development of robust microbial strains tolerant to inhibitory compounds and capable of converting sugar mixtures is also needed for cost-effectiveness of the process. This chapter compiles recent advances in lignocellulosic ethanol production processes, from novel raw materials or fermenting microorganisms to new processing technologies addressed to commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imran A, Varman M, Masjuki HH, Kalam MA. Review on alcohol fumigation on diesel engine: a viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission. Renew Sust Energ Rev. 2013;26:739–51.

    Article  CAS  Google Scholar 

  2. Lynd LR. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ. 1996;21(1):403–65.

    Article  Google Scholar 

  3. Balan V, Chiaramonti D, Kumar S. Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod Biorefin. 2013;7(6):732–59.

    Article  CAS  Google Scholar 

  4. Yu Y-S, Giles B, Oh V. State of the market report – uncovering the cost of cellulosic ethanol production. Luxresearch; 2016.

    Google Scholar 

  5. Statistics NEO. Fuel prices: Nebraska Energy Office; 2016. Available from: http://www.neo.ne.gov/statshtml/66.html. Access date: Nov 2016.

  6. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  7. Tomás-Pejó E, Alvira P, Ballesteros M, Negro MJ. Pretreatment technologies for lignocellulose-to-bioethanol conversion. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E, editors. Biofuels. Alternative feedstocks and conversion processes. Amsterdam: Academic Press; 2011. p. 149–76.

    Google Scholar 

  8. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101(13):4851–61.

    Article  CAS  PubMed  Google Scholar 

  9. Vandenbossche V, Brault J, Vilarem G, Hernández-Meléndez O, Vivaldo-Lima E, Hernández-Luna M, Barzana E, Duque A, Manzanares P, Ballesteros M, Mata J, Castellón E, Rigal L. A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder. Ind Crop Prod. 2014;55:258–66.

    Article  CAS  Google Scholar 

  10. da Costa SL, Jin M, Chundawat SPS, Bokade V, Tang X, Azarpira A, Lu F, Avci U, Humpula J, Uppugundla N, Gunawan C, Pattathil S, Cheh AM, Kothari N, Kumar R, Ralph J, Hahn MG, Wyman CE, Singh S, Simmons BA, Dale BE, Balan V. Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ Sci. 2016;9(4):1215–23.

    Article  Google Scholar 

  11. Taherzadeh MJ, Karimi K. Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E, editors. Biofuels. Alternative feedstocks and conversion processes. Amsterdam: Academic Press; 2011. p. 287–311.

    Google Scholar 

  12. Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol. 2015;35(3):342–54.

    Article  PubMed  CAS  Google Scholar 

  13. Olsson L, Jørgensen H, Krogh KBR, Roca CFA. Bioethanol production from lignocellulosic material. In: Dumitriu S, editor. Polysaccharides: structural diversity and functional versatility. New York: Marcel Dekker; 2005. p. 957–93.

    Google Scholar 

  14. Martín C, Marcet M, Almazan O, Jönsson LJ. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol. 2007;98(9):1767–73.

    Article  PubMed  CAS  Google Scholar 

  15. Tomás-Pejó E, Ballesteros M, Oliva JM, Olsson L. Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. J Ind Microbiol Biotechnol. 2010;37(11):1211–20.

    Article  PubMed  CAS  Google Scholar 

  16. Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Factories. 2011;10(1):1–13.

    Article  CAS  Google Scholar 

  17. Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquie-Moreno MR, Thevelein JM. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res. 2015;15(6).

    Google Scholar 

  18. Sánchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008;99(13):5270–95.

    Article  PubMed  CAS  Google Scholar 

  19. Ballesteros M, Sáez F, Ballesteros I, Manzanares P, Negro MJ, Martínez JM, Castañeda R, Oliva JM. Ethanol production from the organic fraction obtained after thermal pretreatment of municipal solid waste. Appl Biochem Biotechnol. 2010;161(1–8):423–31.

    Article  CAS  PubMed  Google Scholar 

  20. Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012;38(4):449–67.

    Article  CAS  Google Scholar 

  21. Milledge J, Smith B, Dyer P, Harvey P. Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies. 2014;7(11):7194–222.

    Article  CAS  Google Scholar 

  22. Pauly M, Keegstra K. Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol. 2010;13(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  23. Loque D, Scheller HV, Pauly M. Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol. 2015;25:151–61.

    Article  CAS  PubMed  Google Scholar 

  24. Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim JS, Sun L, Zheng K, Tang K, Auer M, Scheller HV, Loque D. Engineering secondary cell wall deposition in plants. Plant Biotechnol J. 2013;11(3):325–35.

    Article  CAS  PubMed  Google Scholar 

  25. Wilkerson CG, Mansfield SD, Lu F, Withers S, Park J-Y, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science. 2014;344(6179):90–3.

    Article  CAS  PubMed  Google Scholar 

  26. Schultink A, Naylor D, Dama M, Pauly M. The role of the plant-specific ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall polysaccharide O-acetylation. Plant Physiol. 2015;167(4):1271–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bartley LE, Peck ML, Kim SR, Ebert B, Manisseri C, Chiniquy DM, Sykes R, Gao L, Rautengarten C, Vega-Sanchez ME, Benke PI, Canlas PE, Cao P, Brewer S, Lin F, Smith WL, Zhang X, Keasling JD, Jentoff RE, Foster SB, Zhou J, Ziebell A, An G, Scheller HV, Ronald PC. Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiol. 2013;161(4):1615–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coleman HD, Yan J, Mansfield SD. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci U S A. 2009;106(31):13118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Joshi CP, Thammannagowda S, Fujino T, Gou JQ, Avci U, Haigler CH, McDonnell LM, Mansfield SD, Mengesha B, Carpita NC, Harris D, Debolt S, Peter GF. Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. Mol Plant. 2011;4(2):331–45.

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen THM, Vu VH. Bioethanol production from marine algae biomass: prospect and troubles. J Viet Env. 2012;3(1):25–9.

    Google Scholar 

  31. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96(6):673–86.

    Article  CAS  PubMed  Google Scholar 

  32. Sun S, Sun S, Cao X, Sun R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol. 2016;199:49–58.

    Article  CAS  PubMed  Google Scholar 

  33. Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol. 2005;121-124:1069–79.

    Article  CAS  PubMed  Google Scholar 

  34. Mansfield SD, Mooney C, Saddler JN. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog. 1999;15(5):804–16.

    Article  CAS  PubMed  Google Scholar 

  35. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol. 2007;108:67–93.

    CAS  PubMed  Google Scholar 

  36. Mussatto SI, Dragone GM. Biomass pretreatment, biorefineries, and potential products for a bioeconomy development. In: Mussato SI, editor. Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Amsterdam: Elsevier; 2016. p. 1–22.

    Google Scholar 

  37. Viikari L, Vehmaanperä J, Koivula A. Lignocellulosic ethanol: from science to industry. Biomass Bioenergy. 2012;46:13–24.

    Article  CAS  Google Scholar 

  38. Alvira P, Ballesteros M, Negro MJ. Progress on enzymatic saccharification technologies for biofuels production. In: Gupta VK, Tuohy MG, editors. Biofuel technologies: recent developments. Berlin/Heidelberg: Springer; 2013. p. 145–69.

    Chapter  Google Scholar 

  39. Martínez AT. How to break down crystalline cellulose. Science. 2016;352(6289):1050–1.

    Article  PubMed  Google Scholar 

  40. Jørgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin. 2007;1(2):119–34.

    Article  CAS  Google Scholar 

  41. Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci. 2008;9(9):1621–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duque A, Manzanares P, Ballesteros I, Negro MJ, Oliva JM, Gonzalez A, Ballesteros M. Sugar production from barley straw biomass pretreated by combined alkali and enzymatic extrusion. Bioresour Technol. 2014;158:262–8.

    Article  CAS  PubMed  Google Scholar 

  43. Saha BC, Iten LB, Cotta MA, Wu YV. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 2005;40(12):3693–700.

    Article  CAS  Google Scholar 

  44. Carvalheiro F, Duarte LC, Gírio FM. Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res. 2008;67(11):849–64.

    CAS  Google Scholar 

  45. Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009;48(8):3713–29.

    Article  CAS  Google Scholar 

  46. Zhang YH, Ding SY, Mielenz JR, Cui JB, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng. 2007;97(2):214–23.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol. 2009;82(5):815–27.

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen TY, Cai CM, Osman O, Kumar R, Wyman CE. CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings. Green Chem. 2016;18(6):1581–9.

    Article  CAS  Google Scholar 

  49. Brandt A, Gräsvik J, Hallett JP, Welton T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013;15(3):550.

    Article  CAS  Google Scholar 

  50. Akhtar N, Gupta K, Goyal D, Goyal A. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energy. 2016;35(2):489–511.

    Article  CAS  Google Scholar 

  51. Duarte CL, Ribeiro MA, Oikawa H, Mori MN, Napolitano CM, Galvão CA. Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse. Radiat Phys Chem. 2012;81(8):1008–11.

    Article  CAS  Google Scholar 

  52. Moretti MMS, Bocchini-Martins DA, Nunes CCC, Villena MA, Perrone OM, da Silva R, Boscolo M, Gomes E. Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Appl Energy. 2014;122:189–95.

    Article  CAS  Google Scholar 

  53. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J. 2009;46(2):126–31.

    Article  CAS  Google Scholar 

  54. Bhalla A, Bansal N, Stoklosa RJ, Fountain M, Ralph J, Hodge DB, Hegg EL. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar. Biotechnol Biofuels. 2016;9:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Socha AM, Parthasarathi R, Shi J, Pattathil S, Whyte D, Bergeron M, George A, Tran K, Stavila V, Venkatachalam S, Hahn MG, Simmons BA, Singh S. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc Natl Acad Sci U S A. 2014;111(35):E3587–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev. 2013;21:35–51.

    Article  CAS  Google Scholar 

  57. Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J. Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng. 2005;90(4):473–81.

    Article  CAS  PubMed  Google Scholar 

  58. Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M. Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol. 2006;129-132:496–508.

    Article  CAS  PubMed  Google Scholar 

  59. Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro MJ, Castro E. Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel. 2008;87(6):692–700.

    Article  CAS  Google Scholar 

  60. Oliva JM, Sáez F, Ballesteros I, González A, Negro MJ, Manzanares P, Ballesteros M. Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol. 2003;105-108:141–53.

    Article  CAS  PubMed  Google Scholar 

  61. Galbe M, Zacchi G. A review of the production of ethanol from softwood. Appl Microbiol Biotechnol. 2002;59(6):618–28.

    Article  CAS  PubMed  Google Scholar 

  62. Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE. Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol. 2005;124(1):1081–99.

    Article  Google Scholar 

  63. Mendonça RT, Jara JF, González V, Elissetche JP, Freer J. Evaluation of the white-rot fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. J Ind Microbiol Biotechnol. 2008;35(11):1323–30.

    Article  PubMed  CAS  Google Scholar 

  64. Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez AT, Martínez MJ. Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol. 2011;102(16):7500–6.

    Article  PubMed  CAS  Google Scholar 

  65. Gutierrez A, Rencoret J, Cadena EM, Rico A, Barth D, del Rio JC, Martinez AT. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour Technol. 2012;119:114–22.

    Article  CAS  PubMed  Google Scholar 

  66. Martín-Sampedro R, Fillat U, Ibarra D, Eugenio ME. Towards the improvement of Eucalyptus globulus chemical and mechanical pulping using endophytic fungi. Int Biodeterior Biodegradation. 2015;105:120–6.

    Article  CAS  Google Scholar 

  67. Martín-Sampedro R, Fillat U, Ibarra D, Eugenio ME. Use of new endophytic fungi as pretreatment to enhance enzymatic saccharification of Eucalyptus globulus. Bioresour Technol. 2015;196:383–90.

    Article  PubMed  CAS  Google Scholar 

  68. Rencoret J, Pereira A, del Río JC, Martínez AT, Gutiérrez A. Laccase-mediator pretreatment of wheat straw degrades lignin and improves saccharification. Bioenergy Res. 2016;9(3):917–30.

    Article  CAS  Google Scholar 

  69. Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv. 2009;27(2):185–94.

    Article  PubMed  CAS  Google Scholar 

  70. Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74(1):25–33.

    Article  CAS  Google Scholar 

  71. Panagiotou G, Olsson L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng. 2007;96(2):250–8.

    Article  CAS  PubMed  Google Scholar 

  72. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M. Deactivation of cellulases by phenols. Enzym Microb Technol. 2011;48(1):54–60.

    Article  CAS  Google Scholar 

  73. Jonsson LJ, Martín C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–12.

    Article  PubMed  CAS  Google Scholar 

  74. Mayer AM, Staples RC. Laccase: new functions for an old enzyme. Phytochemistry. 2002;60(6):551–65.

    Article  CAS  PubMed  Google Scholar 

  75. Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates. FEBS Lett. 1990;267(1):99–102.

    Article  CAS  PubMed  Google Scholar 

  76. García-Aparicio MP, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ. Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol. 2006;129(1):278–88.

    Article  PubMed  Google Scholar 

  77. Larsson S, Reimann A, Nilvebrant N-O, Jönsson LJ. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol. 1999;77(1):91–103.

    Article  Google Scholar 

  78. Fargues C, Lewandowski R, Lameloise M-L. Evaluation of ion-exchange and adsorbent resins for the detoxification of beet distillery effluents. Ind Eng Chem Res. 2010;49(19):9248–57.

    Article  CAS  Google Scholar 

  79. Rodrigues RCLB, Felipe MGA, Almeida e Silva JB, Vitolo M, Gómez PV. The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation. Braz J Chem Eng. 2001;18:299–311.

    Article  CAS  Google Scholar 

  80. Wilson JJ, Deschatelets L, Nishikawa NK. Comparative fermentability of enzymatic and acid hydrolysates of steam-pretreated aspenwood hemicellulose by Pichia stipitis CBS 5776. Appl Microbiol Biotechnol. 1989;31(5):592–6.

    Article  CAS  Google Scholar 

  81. Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol. 2011;31(1):20–31.

    Article  CAS  PubMed  Google Scholar 

  82. Palmqvist E, Hahn-Hägerdal B, Szengyel Z, Zacchi G, Réczey K. Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzym Microb Technol. 1997;20(4):286–93.

    Article  CAS  Google Scholar 

  83. Alvira P, Moreno AD, Ibarra D, Sáez F, Ballesteros M. Improving the fermentation performance of Saccharomyces cerevisiae by laccase during ethanol production from steam-exploded wheat straw at high-substrate loadings. Biotechnol Prog. 2013;29(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  84. Jurado M, Prieto A, Martínez-Alcalá A, Martínez AT, Martínez MJ. Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol. 2009;100(24):6378–84.

    Article  CAS  PubMed  Google Scholar 

  85. Moreno AD, Ibarra D, Mialon A, Ballesteros M. A bacterial laccase for enhancing saccharification and ethanol fermentation of steam-pretreated biomass. Fermentation. 2016;2:11.

    Article  Google Scholar 

  86. Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M. Exploring laccase and mediators behavior during saccharification and fermentation of steam-exploded wheat straw for bioethanol production. J Chem Technol Biotechnol. 2016;91(6):1816–25.

    Article  CAS  Google Scholar 

  87. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng. 2008;100(6):1122–31.

    Article  PubMed  CAS  Google Scholar 

  88. Shao X, Jin M, Guseva A, Liu C, Balan V, Hogsett D, Dale BE, Lynd L. Conversion for avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Bioresour Technol. 2011;102(17):8040–5.

    Article  CAS  PubMed  Google Scholar 

  89. Jin M, Gunawan C, Balan V, Dale BE. Consolidated bioprocessing (CBP) of AFEX-pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading. Biotechnol Bioeng. 2012;109(8):1929–36.

    Article  CAS  PubMed  Google Scholar 

  90. Yee KL, Rodriguez Jr M, Thompson OA, Fu C, Wang Z-Y, Davison BH, Mielenz JR. Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain. Biotechnol Biofuels. 2014;7:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Xiao Z, Zhang X, Gregg DJ, Saddler JN. Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol. 2004;115(1):1115–26.

    Article  Google Scholar 

  92. Qing Q, Yang B, Wyman CE. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol. 2010;101(24):9624–30.

    Article  CAS  PubMed  Google Scholar 

  93. Andric P, Meyer AS, Jensen PA, Dam-Johansen K. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv. 2010;28(3):308–24.

    Article  CAS  PubMed  Google Scholar 

  94. Wingren A, Galbe M, Zacchi G. Techno-Economic Evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog. 2003;19(4):1109–17.

    Article  CAS  PubMed  Google Scholar 

  95. Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M. Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol. 2000;25(4):184–92.

    Article  CAS  Google Scholar 

  96. Zhang B, Zhang J, Wang D, Han R, Ding R, Gao X, Sun L, Hong J. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus. Bioresour Technol. 2016;216:227–37.

    Article  CAS  PubMed  Google Scholar 

  97. Moreno AD, Ibarra D, Ballesteros I, Fernández JL, Ballesteros M. Ethanol from laccase-detoxified lignocellulose by the thermotolerant yeast Kluyveromyces marxianus-Effects of steam pretreatment conditions, process configurations and substrate loadings. Biochem Eng J. 2013;79:94–103.

    Article  CAS  Google Scholar 

  98. Abdel-Banat BM, Hoshida H, Ano A, Nonklang S, Akada R. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol. 2010;85(4):861–7.

    Article  CAS  PubMed  Google Scholar 

  99. Olsson L, Soerensen HR, Dam BP, Christensen H, Krogh KM, Meyer AS. Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Appl Biochem Biotechnol. 2006;129-132:117–29.

    Article  CAS  PubMed  Google Scholar 

  100. Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I. Recent updates on lignocellulosic biomass derived ethanol - A review. Biofuel Research Journal. 2016;3(1):347–56.

    Article  CAS  Google Scholar 

  101. Cannella D, Jørgensen H. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng. 2014;111:59–68.

    Article  CAS  PubMed  Google Scholar 

  102. Lynd LR, van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 2005;16(5):577–83.

    Article  CAS  PubMed  Google Scholar 

  103. Bayer EA, Belaich JP, Shoham Y, Lamed R. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol. 2004;58:521–54.

    Article  CAS  PubMed  Google Scholar 

  104. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A. 2008;105(37):13769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A. 2011;108(50):19949–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chung D, Cha M, Guss AM, Westpheling J. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A. 2014;111(24):8931–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. van Zyl WH, Lynd LR, den Haan R, McBride JE. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. In: Olsson L, editor. Biofuels. Berlin/Heidelberg: Springer; 2007. p. 205–35.

    Google Scholar 

  108. Matano Y, Hasunuma T, Kondo A. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour Technol. 2013;135:403–9.

    Article  CAS  PubMed  Google Scholar 

  109. Yamada R, Hasunuma T, Kondo A. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv. 2013;31(6):754–63.

    Article  CAS  PubMed  Google Scholar 

  110. Guo Z, Duquesne S, Bozonnet S, Cioci G, Nicaud JM, Marty A, O'Donohue MJ. Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes. Biotechnol Biofuels. 2015;8:109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Convers Manage. 2011;52(2):858–75.

    Article  CAS  Google Scholar 

  112. Koppram R, Olsson L. Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings. Biotechnol Biofuels. 2014;7:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wang R, Unrean P, Franzén CJ. Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production. Biotechnol Biofuels. 2016;9:88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Shen J, Agblevor FA. Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge. Bioprocess Biosyst Eng. 2011;34(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  115. Gonçalves FA, Ruiz HA, Silvino dos Santos E, Teixeira JA, de Macedo GR. Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renew Energy. 2016;94:353–65.

    Article  CAS  Google Scholar 

  116. Liu K, Zhang J, Bao J. Two stage hydrolysis of corn stover at high solids content for mixing power saving and scale-up applications. Bioresour Technol. 2015;196:716–20.

    Article  CAS  PubMed  Google Scholar 

  117. Westman JO, Bonander N, Taherzadeh MJ, Franzén CJ. Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules. Biotechnol Biofuels. 2014;7:102.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ylitervo P, Franzén CJ, Taherzadeh MJ. Continuous ethanol production with a membrane bioreactor at high acetic acid concentrations. Membranes. 2014;4(3):372–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 2006;69(6):627–42.

    Article  CAS  PubMed  Google Scholar 

  120. Ostergaard S, Olsson L, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol R. 2000;64(1):34–50.

    Article  CAS  Google Scholar 

  121. Dussán KJ, Silva DDV, Perez VH, da Silva SS. Evaluation of oxygen availability on ethanol production from sugarcane bagasse hydrolysate in a batch bioreactor using two strains of xylose-fermenting yeast. Renew Energy. 2016;87:703–10.

    Article  CAS  Google Scholar 

  122. Long TM, Su YK, Headman J, Higbee A, Willis LB, Jeffries TW. Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Appl Environ Microbiol. 2012;78(16):5492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Krahulec S, Klimacek M, Nidetzky B. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J Biotechnol. 2012;158(4):192–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Petschacher B, Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Factories. 2008;7:9.

    Article  CAS  Google Scholar 

  125. Karhumaa K, García Sánchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Factories. 2007;6:5.

    Article  CAS  Google Scholar 

  126. Gonçalves DL, Matsushika A, de Sales BB, Goshima T, Bon EP, Stambuk BU. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzym Microb Technol. 2014;63:13–20.

    Article  CAS  Google Scholar 

  127. Kricka W, Fitzpatrick J, Bond U. Challenges for the production of bioethanol from biomass using recombinant yeasts. In: Sariaslani S, Gadd GM, editors. Advances in applied microbiology. Amsterdam: Academic Press; 2015. p. 89–125.

    Google Scholar 

  128. Runquist D, Hahn-Hägerdal B, Radstrom P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels. 2010;3:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Koppram R, Albers E, Olsson L. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels. 2012;5:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nielsen F, Tomás-Pejó E, Olsson L, Wallberg O. Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation. Biotechnol Biofuels. 2015;8:219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Tomás-Pejó E, Olsson L. Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates. Microb Biotechnol. 2015;8(6):999–1005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Komeda H, Yamasaki-Yashiki S, Hoshino K, Asano Y. Identification and characterization of D-xylulokinase from the D-xylose-fermenting fungus, Mucor circinelloides. FEMS Microbiol Lett. 2014;360(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  133. Millati R, Edebo L, Taherzadeh MJ. Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzym Microb Technol. 2005;36(2–3):294–300.

    Article  CAS  Google Scholar 

  134. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006;24(12):549–56.

    Article  PubMed  CAS  Google Scholar 

  135. Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006;71(3):339–49.

    Article  CAS  PubMed  Google Scholar 

  136. Pereira FB, Guimarães PMR, Gomes DG, Mira NP, Teixeira MC, Sá-Correia I, Domingues L. Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations. Biotechnol Biofuels. 2011;4:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xiao H, Zhao H. Genome-wide RNAi screen reveals the E3 SUMO-protein ligase gene SIZ1 as a novel determinant of furfural tolerance in Saccharomyces cerevisiae. Biotechnol Biofuels. 2014;7:78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Lu Y, Cheng YF, He XP, Guo XN, Zhang BR. Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors. J Ind Microbiol Biotechnol. 2012;39(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  139. Çakar ZP, Turanli-Yildiz B, Alkim C, Yilmaz U. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res. 2012;12(2):171–82.

    Article  PubMed  CAS  Google Scholar 

  140. Alkasrawi M, Rudolf A, Lidén G, Zacchi G. Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enzym Microb Technol. 2006;38(1–2):279–86.

    Article  CAS  Google Scholar 

  141. Ruyters S, Mukherjee V, Verstrepen KJ, Thevelein JM, Willems KA, Lievens B. Assessing the potential of wild yeasts for bioethanol production. J Ind Microbiol Biotechnol. 2015;42(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  142. Dandi ND, Dandi BN, Chaudhari AB. Bioprospecting of thermo- and osmo-tolerant fungi from mango pulp-peel compost for bioethanol production. Antonie Van Leeuwenhoek. 2013;103(4):723–36.

    Article  CAS  PubMed  Google Scholar 

  143. Lindberg L, Santos AX, Riezman H, Olsson L, Bettiga M. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS One. 2013;8(9):e73936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Echeverrigaray S, Randon M, da Silva K, Zacaria J, Delamare AP. Identification and characterization of non-Saccharomyces spoilage yeasts isolated from Brazilian wines. World J Microbiol Biotechnol. 2013;29(6):1019–27.

    Article  CAS  PubMed  Google Scholar 

  145. Tomás-Pejó E, Oliva JM, González A, Ballesteros I, Ballesteros M. Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel. 2009;88(11):2142–7.

    Article  CAS  Google Scholar 

  146. García-Aparicio MP, Oliva JM, Manzanares P, Ballesteros M, Ballesteros I, González A, Negro MJ. Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel. 2011;90(4):1624–30.

    Article  CAS  Google Scholar 

  147. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem. 2004;39(12):1843–8.

    Article  CAS  Google Scholar 

  148. Faga BA, Wilkins MR, Banat IM. Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D5A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresour Technol. 2010;101(7):2273–9.

    Article  CAS  PubMed  Google Scholar 

  149. Ballesteros M, Oliva JM, Manzanares P, Negro MJ, Ballesteros I. Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis. World J Microbiol Biotechnol. 2002;18(6):559–61.

    Article  CAS  Google Scholar 

  150. Kádár Z, Szengyel Z, Réczey K. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crop Prod. 2004;20(1):103–10.

    Article  CAS  Google Scholar 

  151. Edgardo A, Carolina P, Manuel R, Juanita F, Baeza J. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzym Microb Technol. 2008;43(2):120–3.

    Article  CAS  Google Scholar 

  152. Hari Krishna S, Janardhan Reddy T, Chowdary GV. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour Technol. 2001;77(2):193–6.

    Article  CAS  PubMed  Google Scholar 

  153. Scully S, Orlygsson J. Recent advances in second generation ethanol production by thermophilic bacteria. Energies. 2014;8(1):1–30.

    Article  CAS  Google Scholar 

  154. Hild HM, Stuckey DC, Leak DJ. Effect of nutrient limitation on product formation during continuous fermentation of xylose with Thermoanaerobacter ethanolicus JW200 Fe(7). Appl Microbiol Biotechnol. 2003;60(6):679–86.

    Article  CAS  PubMed  Google Scholar 

  155. Jessen JE, Orlygsson J. Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland. J Biomed Biotechnol. 2012;2012:186982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Moshi AP, Hosea KM, Elisante E, Mamo G, Mattiasson B. High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (Manihot glaziovii) to bioethanol using Caloramator boliviensis. Bioresour Technol. 2015;180:128–36.

    Article  CAS  PubMed  Google Scholar 

  157. Koppram R, Tomás-Pejó E, Xiros C, Olsson L. Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol. 2014;32(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  158. Saito H, Posas F. Response to hyperosmotic stress. Genetics. 2012;192(2):289–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Martorell P, Stratford M, Steels H, Fernandez-Espinar MT, Querol A. Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int J Food Microbiol. 2007;114(2):234–42.

    Article  CAS  PubMed  Google Scholar 

  160. Leandro MJ, Sychrova H, Prista C, Loureiro-Dias MC. The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters. Microbiology. 2011;157(Pt 2):601–8.

    Article  CAS  PubMed  Google Scholar 

  161. Saha BC, Nichols NN, Cotta MA. Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading. Bioresour Technol. 2011;102(23):10892–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank the Spanish Ministry of Economy and Competitiveness for funding the present work via Projects ENE2014-54912-R and CTQ2013-47158-R. ETP acknowledges the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 291803. ADM acknowledges the “Juan de la Cierva” Programme for contract FJCI-2014-22385.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio D. Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Moreno, A.D., Alvira, P., Ibarra, D., Tomás-Pejó, E. (2017). Production of Ethanol from Lignocellulosic Biomass. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-4172-3_12

Download citation

Publish with us

Policies and ethics