Skip to main content

Microbial Interactions in Litchi Rhizosphere

  • Chapter
  • First Online:
Lychee Disease Management

Abstract

The litchi is one of the chief fruits of the Asian continent. It is grown almost half of the year and is enjoyed by people for its sweet juice as well as its soft pulp. Also, it is very rich in vitamin C and important minerals and antioxidants. Modern farming does not use chemical fertilizers; thus, bio-fertilizers are used, exploiting the relationship of microbial interactions to plant growth. Mycorrhizal fungi associations are found in the litchi rhizosphere, and these fungi acquire their nutrition from the associated host plants and consequently enhance access to phosphorus and nitrogen. The association between fungi and trees such as the litchi is recognized as vesicular arbuscular mycorrhizae (VAM). In soil habitat, arbuscular mycorrhizal fungi (AMF) are present in symbiosis with litchi roots and cause increase in root length by secreting plant hormones. Availability of appropriate temperature and nutrients will strongly influence the association of arbuscular mycorrhizal fungi with plant growth. Thus, the present chapter focuses on understanding how microbial flora interaction with the litchi rhizosphere helps to enhance the potential productivity of the litchi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Aloni R et al (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ames RN, Reid CP, Porterf PLK, Cambardella C (1983) Hypha uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396

    Article  Google Scholar 

  • Amijee F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol 111:435–446

    Article  Google Scholar 

  • Andersen Ø, Jordheim M (2006) The anthocyanins. In: Andersen ØM, Markham KR (eds) Flavonoids. CRC Press, Boca Raton, pp 471–551

    Google Scholar 

  • Anon (2003) The wealth of India: a dictionary of Indian raw materials and industrial products. In: First Supplement Series (Raw Materials), vol 4. J-Q. National Institute of Science Communication and Information Resources (NISCIR), CSIR, New Delhi, pp 47–48

    Google Scholar 

  • Anon (2012) Final area and production estimates for horticulture crops for 2011–2012. National Horticulture Board, Government of India. http://nhb.gov.in/area%20_production.html

  • Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514

    Article  PubMed  Google Scholar 

  • Aradhana D, Sharma DR, Dohroo NP (2013a) Biodiversity of arbuscular mycorrhizal fungi in agricultural crops of western Himalayas. Ann Plant Prot Sci 21:391–395

    Google Scholar 

  • Aradhana D, Sharma DR, Dohroo NP (2013b) Occurrence of arbuscular mycorrhizae in rhizospheric soils of different crops and agroclimatic zones of Himachal Pradesh, India. Indian J Agric Res 47(4):373–376

    Google Scholar 

  • Bais HP, Tiffony L, Weir LT, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plant and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • BaltruÅ¡aitytÄ“ V, Venskutonis PR, CÄ›ksterytÄ“ V (2007) Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chem 101:502–514

    Article  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Bhoopat L, Srichairatanakool S, Kanjanapothi D, Taesotikul T, Thananchai H, Bhoopat T (2011) Hepatoprotective effects of lychee (Litchi chinensis Sonn.): a combination of antioxidant and anti-apoptotic activities. J Ethnopharmacol 136(1):55–66

    Article  CAS  PubMed  Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialized niche for rhizospheric and endocellular bacteria. Antonie van Leeuwenhoek 81:365–371

    Article  CAS  PubMed  Google Scholar 

  • Biglari F, AlKarkhi AFM, Easa AM (2008) Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem 107:1636–1641

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Bonfante P (2003) Plants, mycorrhizal fungi, and endobacteria: a dialog among cells and genomes. Biol Bull 204:215–220

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Ver Lorenvan Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Butani DK (1977) Pests of litchi in India and their control. Fruits 32:269–273

    Google Scholar 

  • Cakmakci Turan RM, Gelluce M, Sahin F (2014) Rhizobacteria for reduced fertilizer inputs in wheat (Triticum aestivum spp. vulgare) and barley (Hordeum vulgare) on aridisols in Turkey. Int J Plant Prod 8(2):163–182

    Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:55731

    Article  Google Scholar 

  • Database of National Horticulture Board, Ministry of Agriculture, Govt. of India. http://nhb.gov.in/model-project-reports/Horticulture%20Crops/Litchi/Litchi1.htm

  • Davenport TL (2000) The process influencing floral initiation and bloom in litchi: the role of phytohormones in a conceptual flowering model. Hortic Technol 10:733–739

    CAS  Google Scholar 

  • David PJ, Michelle SS, Bruce S, Jonatha HC (2001) Inoculation with arbuscular mycorrhizal fungi enhances growth of Litchi chinensis Sonn. Trees after propagation by air-layering. Plant Soil 233:85–94

    Article  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Anguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Response of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere: a review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Drogue B, Dore H, Borland S, Wisniewski-Doré F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants? Res Microbiol 163:500–510

    Article  PubMed  Google Scholar 

  • Duan X, Jiang Y, Su X, Zhang Z, Shi J (2007) Antioxidant properties of anthocyanins extracted from litchi (Litchi chinensis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chem 101:1365–1371

    Article  CAS  Google Scholar 

  • Edward JC, Misra SL (1964) Hemicriconemoides communis n. sp. and H. litchi n. sp. (Nematoda: Criconematidae), from Uttar Pradesh, India. Nematologica 9(3):405–411

    Article  Google Scholar 

  • Evans E, Degner R, Crane J, Rafie R, Balerdi C (2004) Is it still profitable to grow lychee in South Florida? EDIS FE496, Dept. Food and Resource Econ., Univ. Fla., Gainesville. http://edis.ifas.ufl.edu/fe496. Accessed 25 Sep 2013

  • FAO (2002) Lychee production in the Asian-Pacific Region. RAP Publ., Bangkok, Thailand

    Google Scholar 

  • Fitter AH (2006) What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3–6

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Avio L, Fortuna P, Pellegrino E, Sbrana C, Strani P (2006) At the root of the wood wide web. Self recognition and nonself incompatibility in mycorrhizal networks. Plant Signal Behav 1:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Goren M, Gazit S (1996) Management of lychee orchards in Israel. In: Proceedings of fourth National Lychee Seminar. Australian Lychee Growers Association, Yeppoon, pp 74–77

    Google Scholar 

  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • He X, Mouratov S, Steinberger Y (2002) Temporal and spatial dynamics of vesicular-arbuscular mycorrhizal fungi under the canopy of Zygophyllum dumosum Boiss. in the Negev Desert. J Arid Environ 52:379–387

    Article  Google Scholar 

  • Heather N, Hallman G (2008) Pest management and phytosanitary trade barriers. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature (Lond) 413:297–299

    Article  Google Scholar 

  • Hörtensteiner S (2013) Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol 82(6):505–517

    Article  PubMed  Google Scholar 

  • Hui YH (2008) Lychee. Handbook of fruits and fruit processing. Wiley, New Delhi, pp 606–611

    Google Scholar 

  • IAEA (1992) Use of Irradiation as a quarantine treatment of food and agricultural commodities. In: Proceedings of a meeting, Malaysia 1990. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Jaiswal BP, Sah NL, Prasad US (1986) Studies on phenolics of rind and aril during ripening and senescence of litchi fruits. Plant Physiol Biochem 13(1):40–45

    Google Scholar 

  • Jiang YM, Zhu XR, Li YB (2001) Post-harvest control of litchi fruit rot by Bacillus subtilis. LWT Food Sci Technol 34:430–436

    Article  CAS  Google Scholar 

  • Jiang Y, Yao L, Lichter A, Li J (2003) Post-harvest biology and technology of litchi fruit. J Food Agric Environ 1(2):76–81

    Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Jose AM, Schafer E (1978) Distorted phytochrome action spectra in green plants. Planta 138(1):25–28

    Article  CAS  PubMed  Google Scholar 

  • Kaldorf M, Muller LJ (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–64

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhinkov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars and L-tryptophan in exudates of vegetables growing on stone wool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19:250–256

    Article  CAS  PubMed  Google Scholar 

  • Karnick A (2014) Cultivars and varieties of litchi. In: Agropedia. http://agropedia.iitk.ac.in/content/cultivars-and-varieties-litchi

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kirtikar KR, Basu BD (1999) Indian medicinal plants, vol I. International Book Distributors, Dehradun, pp 636–637

    Google Scholar 

  • Koide RT (1991) Tansley review no. 29: nutrient supply, nutrient demand, and plant response to mycorrhizal infection. New Phytol 117:365–386

    Article  CAS  Google Scholar 

  • Kumar V, Kumar R, Kumar A, Anal D, Info P (2016) Spore population, colonization, species diversity and factors influencing the association of arbuscular mycorrhizal fungi with litchi trees in India. J Environ Biol 37:91–100

    CAS  PubMed  Google Scholar 

  • Lee HS, Wicker L (1991) Anthocyanin pigments in the skin of lychee fruit. J Food Sci 56(466–468):483

    Google Scholar 

  • Liu SH, Lin JT, Wang CK, Chen HY, Yang DJ (2009) Antioxidant properties of various solvent extracts from lychee (Litchi chinensis Sonn.) flowers. Food Chem 114:577–581

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV (2002) Microbe plant interactions: principle and mechanisms. Antonie van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Mahaffee WF, Kloepper JW (1994) Applications of plant growth promoting rhizobacteria in sustainable agriculture. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO, Melbourne, pp 23–31

    Google Scholar 

  • Mahattanatawee K, Manthey JA, Luzio G, Talcott ST, Goodner K, Baldwin EA (2006) Total antioxidant activity and fiber content of select Florida-grown tropical fruits. J Agric Food Chem 54(19):7355–7363

    Article  CAS  PubMed  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • Menzel C (2002) The lychee crop in Asia and the Pacific. FAO, Bangkok

    Google Scholar 

  • Menzel CM, Simpson DR (1995) Temperatures above 2°C reduce flowering in lychee (Litchi chinensis-Sonn.) J Hortic Sci 70:981–987

    Article  Google Scholar 

  • Morton J (1987) Lychee. In: Morton JF (ed) Fruits of warm climates. Miami, pp 249–259

    Google Scholar 

  • Muthukumar T, Udaiyan K (2002) Seasonality of vesicular-arbuscular mycorrhizae in sedges in a semiarid tropical grassland. Acta Oecol 23:337–347

    Article  Google Scholar 

  • Nakasone HY, Paull RE (1998) Tropical fruits, crop production science in horticulture series. CAB International, Wallingford, pp 173–207

    Google Scholar 

  • National Research Council (1987) Regulating pesticides in food—the Delaney paradox. National Research Council, Board on Agriculture. National Academy Press, Washington, DC

    Google Scholar 

  • Pandey SP, Misra AP (1971) Rhizophagus in mycorrhizal association with Litchi chinensis Sonn. Mycopathol Mycol Appl 45:337–354

    Article  Google Scholar 

  • Pérez-Esteban J, Escolástico C, Moliner A, Masaguer A (2013) Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids. Chemosphere 90:276–283

    Article  PubMed  Google Scholar 

  • Pilkington SM, Montefiori M, Jameson PE, Allan AC (2012) The control of chlorophyll levels in maturing kiwifruit. Planta 236(5):1615–1628

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi RP, Mehrotra BN (1999) Compendium of Indian medicinal plants, vol 2, 1970–1979. CDRI/NISC, Lucknow/New Delhi

    Google Scholar 

  • Rivera-López J, Ordorica-Falomir C, Wesche-Ebeling P (1999) Changes in anthocyanin concentration in lychee (Litchi chinensis Sonn.) pericarp during maturation. Food Chem 65:195–200

    Article  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, Andres CB et al (2012) STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24(2):507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salunke DK, Desai B (1984) Postharvest biotechnology of fruits, vol II. CRC Press, Boca Raton, pp 77–80

    Google Scholar 

  • Sarni-Manchado P, Le Roux E, Le Guernevé C, Lozano Y, Cheynier V (2000) Phenolic composition of litchi fruit pericarp. J Agric Food Chem 48:5995–6002

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Hajare SN, More V, Kumar S, Wadhawan S, Mishra BB et al (2011) Antioxidant and radioprotective properties of commercially grown litchi (Litchi chinensis) from India. Food Chem 126(1):39–45

    Article  CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K et al (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SD, Bhutani VP, Awasthi RP (2002) Effect of vesicular-arbuscular mycorrhizae and phosphorus on leaf and soil nutrient status of apple seedlings. Indian J Hortic 59:140–144

    Google Scholar 

  • Sharma SD, Kumar P, Raj H, Bhardwaj SK (2009) Isolation of arbuscular mycorrhizal fungi and Azotobacter chroococcum from local litchi orchards and evaluation of their activity in the air-layers system. Sci Hortic 123(1):117–123

    Article  Google Scholar 

  • Sheng ZS (1998) Two new species of Hemicriconemoides (Nemata: Criconematidae). Acta Phytopathol Sin 28(4):367–373

    Google Scholar 

  • Shi JX, Wang CS, An XZ, Li JH, Zhao M (2001) Postharvest physiology, storage and transportation of litchi fruits: a review. In: Huang H, Menzel C (eds) International symposium on Litchi and Longan Guangzhou. ISHS Acta Horticulturae, p 558

    Google Scholar 

  • Singh HP, Babita S Lychee production in India. In: Lychee production in the Asia Pacific region. FAO corporate document repository

    Google Scholar 

  • Singh RP, Prasad V (2006) Occurrence and population dynamics of vesicular arbuscular mycorrhizae in the Indian orchards of litchi (Litchi chinensis Sonn), aonla (Phyllanthus emblica L.) and banana (Musa paradisiaca L.) Asian J Biol Sci 1:154–156

    Google Scholar 

  • Singh R, Roy AK, Rani A, Mishra RS, Pandey SK (2013) Diversity in rhizosphere fungi associated with common varieties of litchi (Litchi chinensis) plants of North Bihar. Asian J Microbiol Biotechnol Environ Sci 15:77–83

    Google Scholar 

  • Sorata Y, Takahama U, Kimura M (1984) Protective effect of quercetin and rutin on photosensitized lysis of human erythrocytes in the presence of hematoporphyrin. Biochim Biophys Acta 799:313–317

    Article  CAS  PubMed  Google Scholar 

  • Ström L, Owen AG, Godbold DL, Jones D (2002) Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biol Biochem 34:703–710

    Article  Google Scholar 

  • Takuya S, Hiroshi N, Hajime F, Norihiko N, Takako K, Zsolt R, Tetsuya I, Shukoh H, Hideki O (2008) Antioxidative effects of a new lychee fruit-derived polyphenol mixture, oligonol, converted into a low-molecular form in adipocytes. Biosci Biotechnol Biochem 72(2):463–476

    Article  Google Scholar 

  • Trotta A, Carminati C, Schellenbaum L, Scannerini S, Fusconi A, Berta G (1991) Correlation between root morphogenesis VA mycorrhizal infection and phosphorus nutrition. In: McMichael BL, Persson H (eds) Plant roots and their environment. Elsevier, Amsterdam, pp 333–389

    Chapter  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang HC, Huang XM, Hu GB, Yang Z, Huang HB (2005) A comparative study of chlorophyll loss and its related mechanism during fruit maturation in the pericarp of fast- and slow-degreening litchi pericarp. Sci Hortic 106(2):247–257

    Article  CAS  Google Scholar 

  • Wang LJ, Lou GD, Ma ZJ, Liu XM (2011) Chemical constituents with antioxidant activities from litchi (Litchi chinensis Sonn.) seeds. Food Chem 126(3):1081–1087

    Article  CAS  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Wong LS, Jacobi KK, Peacock BB (1990) Effects of hot benomyl and cold prochloraz on the external appearance of lychee (Litchi chinensis) during storage. Singap J Prim Ind 18:15–17

    Google Scholar 

  • Wong LS, Jacobi KK, Giles JE (1991) The influence of hot benomyl dips on the appearance of cool stored lychee (Litchi chinensis). Sci Hortic 46:245–251

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Zhu HH, Chen JZ (2005) Growth responses and endogenous IAA and iPAs changes in litchi (Litchi chinensis Sonn) seedling induced by arbuscular mycorrhizal fungal inoculation. Sci Hortic 105:145–151

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahmed M, Ovis M (2009) Plant growth promotion by phosphate solubilising bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZQ, Pang XQ, Yang C, Ji ZL, Jiang YM (2004) Purification and structural analysis of anthocyanins from litchi pericarp. Food Chem 84(4):601–604

    Article  CAS  Google Scholar 

  • Zhang R, Zeng Q, Deng Y, Zhang M, Wei Z, Zhang Y et al (2013) Phenolic profiles and antioxidant activity of litchi pulp of different cultivars cultivated in southern China. Food Chem 136(3):1169–1176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director of MNNIT Allahabad for providing the necessary research facilities for this work. The support provided by MHRD sponsored project DIC (Design and Innovation Centre) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivesh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Vishwakarma, K. et al. (2017). Microbial Interactions in Litchi Rhizosphere. In: Kumar, M., Kumar, V., Bhalla-Sarin, N., Varma, A. (eds) Lychee Disease Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-4247-8_2

Download citation

Publish with us

Policies and ethics