Skip to main content

Prefilter-Based Synchronous Reference Frame Phase-Locked Loop Techniques

  • Chapter
  • First Online:
Control Techniques for LCL-Type Grid-Connected Inverters

Part of the book series: CPSS Power Electronics Series ((CPSS))

  • 2390 Accesses

Abstract

Due to the significance of extracting the grid voltage information, the grid synchronization system plays an important role in the control of grid-connected power converters, and various grid voltage synchronization schemes have been proposed. This chapter adopts the complex-vector-filter method (CVFM) to analyze the grid synchronization systems. With this method, the pairs of scalar signals, for example, the α- and β-axis components in the stationary α-β frame, are combined into one complex vector. As a consequence, the grid synchronization systems can be described with the complex transfer functions, which is very convenient to evaluate the steady-state performance, for example, the fundamental and harmonic sequences decoupling/cancellation, and dynamic performance of these systems. Besides, the CVFM also provides a more generalized perspective to understand and develop the grid synchronization systems. Therefore, some of the representative systems are reanalyzed with the CVFM in this chapter. A generalized second-order complex-vector filter and a third-order complex-vector filter are proposed with the CVFM to achieve better dynamic performance or higher harmonic attenuation. Moreover, a brief comparison of the complex-vector filters analyzed in this chapter is presented. The effectiveness of the CVFM and the proposed two complex-vector filters are verified by the simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Std. 1547 (2003)

    Google Scholar 

  2. Technical Rule for Distributed Resources Connected to Power Grid, Q/GDW 480 (2010) (in Chinese)

    Google Scholar 

  3. IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems, IEEE Std. 929 (2000)

    Google Scholar 

  4. Generating Plants Connected the Medium-Voltage Network–Technical Guideline. BDEW, Berlin, Germany (2008)

    Google Scholar 

  5. Technical Rule for Photovoltaic Power Station Connected to Power Grid, Q/GDW 617 (2011) (in Chinese)

    Google Scholar 

  6. Yang, Y., Duan, S., Chao, Z.: Power Electronic Devices and Systems (in Chinese). Tsinghua University Press, Beijing, China (2006)

    Google Scholar 

  7. Kaura, V., Blasko, V.: Operation of a phase locked loop system under distorted utility conditions. IEEE Trans. Ind. Appl. 33(1), 58–63 (1997)

    Article  Google Scholar 

  8. Chung, S.K.: A phase tracking system for three phase utility interface inverters. IEEE Trans. Power Electron. 15(3), 431–438 (2000)

    Article  Google Scholar 

  9. Hoffmann, N., Lohde, R., Fischer, M., Fuchs, F.W., Asiminoaei, L., Thøgersen, P.B.: A review on fundamental grid-voltage detection methods under highly distorted conditions in distributed power-generation networks. In: Proceedings of the IEEE Energy Conversion Congress and Exposition, pp. 3045–3052 (2011)

    Google Scholar 

  10. Li, W., Ruan, X., Bao, C., Pan, D., Wang, X.: Grid synchronization systems of three-phase grid-connected power converters: a complex-vector-filter perspective. IEEE Trans. Ind. Electron. 61(4), 1855–1870 (2014)

    Article  Google Scholar 

  11. Xiong, J.: Research on three-phase voltage-source high-frequency PWM rectifier (in Chinese). PhD dissertation. Huazhong University of Science and Technology, Wuhan, China (1999)

    Google Scholar 

  12. Silva, S., Lopes, B., Filho, B., Campana, R., Bosventura, W.C.: Performance evaluation of PLL algorithms for single-phase grid-connected systems. In: Proceedings of the Annual Meeting of IEEE Industry Applications Society, pp. 2259–2263 (2004)

    Google Scholar 

  13. Eren, S., Karimi-Ghartemani, M., Bakhshai, A.: Enhancing the three-phase synchronous reference frame PLL to remove unbalance and harmonic errors. In: Proceedings of the Annual Conference of IEEE Industrial Electronics Society, pp. 437–441 (2009)

    Google Scholar 

  14. Freijedo, F.D., Yepes, A.G., López, Ó., Vidal, A., Doval-Gandoy, J.: Three-phase PLLs with fast postfault retracking and steady-state rejection of voltage unbalance and harmonics by means of lead compensation. IEEE Trans. Power Electron. 26(1), 85–97 (2011)

    Article  Google Scholar 

  15. Carugati, I., Maestri, S., Donato, P.G., Carrica, D., Benedetti, M.: Variable sampling period filter PLL for distorted three-phase systems. IEEE Trans. Power Electron. 27(1), 321–330 (2012)

    Article  Google Scholar 

  16. Freijedo, F.D., Doval-Gandoy, J., López, Ó., Acha, E.: Tuning of phase- locked loops for power converters under distorted utility conditions. IEEE Trans. Ind. Appl. 45(6), 2039–2047 (2009)

    Article  Google Scholar 

  17. Castilla, M., Miret, J., Sosa, J.L., Matas, J., Vicuña, L.G.: Grid-faults control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics. IEEE Trans. Power Electron. 25(12), 2930–2940 (2010)

    Article  Google Scholar 

  18. Rodríguez, P., Timbus, A.V., Teodorescu, R., Liserre, M., Blaabjerg, F.: Reactive power control for improving wind turbine system behavior under grid faults. IEEE Trans. Power Electron. 24(7), 1798–1801 (2009)

    Article  Google Scholar 

  19. Yuan, X., Merk, W., Stemmler, H., Allmeling, J.: Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions. IEEE Trans. Ind. Appl. 38(2), 523–532 (2002)

    Article  Google Scholar 

  20. Karimi-Ghartemani, M., Iravani, M.R.: A method for synchronization of power electronic converters in polluted and variable-frequency environments. IEEE Trans. Power Syst. 19(3), 1263–1270 (2004)

    Article  Google Scholar 

  21. Karimi-Ghartemani, M., Karimi, H., Iravani, M.R.: A magnitude/phase-locked loop system based on estimation of frequency and in-phase/quadrature-phase amplitudes. IEEE Trans. Ind. Electron. 51(2), 511–517 (2004)

    Article  Google Scholar 

  22. Rodríguez, P., Luna, A., Muñoz-Aguilar, R.S., Etxeberria-Otadui, I., Teodorescu, R., Blaabjerg, F.: A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions. IEEE Trans. Power Electron. 27(1), 99–112 (2012)

    Article  Google Scholar 

  23. Rodríguez, P., Teodorescu, R., Candela, I., Timbus, A.V., Liserre, M., Blaabjerg, F.: New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions. In: Proceedings of the IEEE Power Electronics Specialists Conference, pp. 1–7 (2006)

    Google Scholar 

  24. Rodríguez, P., Luna, A., Candela, I., Mujal, R., Teodorescu, R., Blaabjerg, F.: Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Trans. Ind. Electron. 58(1), 127–138 (2011)

    Article  Google Scholar 

  25. Rodríguez, P., Pou, J., Bergas, J., Candela, J.I., Burgos, R.P., Boroyevich, D.: Decoupled double synchronous reference frame PLL for power converters control. IEEE Trans. Power Electron. 22(2), 584–592 (2007)

    Article  Google Scholar 

  26. Guo, X., Wu, W., Chen, Z.: Multiple-complex coefficient-filter-based phase-locked loop and synchronization technique for three-phase grid-interfaced converters in distributed utility networks. IEEE Trans. Ind. Electron. 58(4), 1194–1204 (2011)

    Article  Google Scholar 

  27. Svensson, J., Bongiorno, M., Sannino, A.: Practical implementation of delayed signal cancellation method for phase-sequence separation. IEEE Trans. Power Del. 22(1), 18–26 (2007)

    Article  Google Scholar 

  28. de Souza, H.E.P., Bradaschia, F., Neves, F.A.S., Cavalcanti, M.C., Azevedo, G.M.S., de Arruda, J.P.: A method for extracting the fundamental-frequency positive-sequence voltage vector based on simple mathematical transformations. IEEE Trans. Ind. Electron 56(5), 1539–1547 (2009)

    Article  Google Scholar 

  29. Neves, F.A.S., Cavalcanti, M.C., de Souza, H.E.P., Bradaschia, F., Bueno, E.J., Rizo, M.: A generalized delayed signal cancellation method for detecting fundamental-frequency positive-sequence three-phase signals. IEEE Trans. Power Del 25(3), 1816–1825 (2010)

    Article  Google Scholar 

  30. Neves, F.A.S., de Souza, H.E.P., Cavalcanti, M.C., Bradaschia, F., Bueno, E.J.: Digital filters for fast harmonic sequence component separation of unbalanced and distorted three-phase signals. IEEE Trans. Ind. Electron 59(10), 3847–3859 (2012)

    Article  Google Scholar 

  31. Wang, Y., Li, Y.: Grid synchronization PLL based on cascaded delayed signal cancellation. IEEE Trans. Power Electron. 26(7), 1987–1997 (2011)

    Article  Google Scholar 

  32. Wang, Y., Li, Y.: Analysis and digital implementation of cascaded delayed-signal-cancellation PLL. IEEE Trans. Power Electron. 26(4), 1067–1080 (2011)

    Article  Google Scholar 

  33. Martin, K.W.: Complex signal processing is not complex. IEEE Trans. Circuits. Syst. I 51(9), 1823–1836 (2004)

    Article  MathSciNet  Google Scholar 

  34. Kang, H., Chen, D., Zhang, L.: Fundamentals of Electronic Technology—Analog Part, 5th edn. Higher Education Press, Beijing, China (2006). (in Chinese)

    Google Scholar 

  35. Yazdani, D., Mojiri, M., Bakhshai, A., Joós, G.: A fast and accurate synchronization technique for extraction of symmetrical components. IEEE Trans. Power Electron. 24(3), 674–684 (2009)

    Article  Google Scholar 

  36. VDN Transmission Code Network and System Rules of the German Transmission System Operators, VDN Transmission Code (2007)

    Google Scholar 

  37. Fortescue, C.L.: Method of symmetrical coordinates applied to the solution of polyphase networks. In: Proceeding of the 34th Annual Convention of the American Institute of Electrical Engineers, 1027–1140 (1918)

    Google Scholar 

  38. Lyon, W.V.: Application of the Method of Symmetrical Components. McGraw-Hill, New York, NY (1937)

    Google Scholar 

  39. Driels, M.: Linear Control Systems Engineering. Tsinghua University Press, Beijing, China (2000)

    Google Scholar 

  40. Ciobotaru, M., Teodorescu, R., Blaabjerg, F.: A new single-phase PLL structure based on second order generalized integrator. In: Proceedings of the IEEE Power Electronics Specialists Conference, pp. 1–6 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbo Ruan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Cite this chapter

Ruan, X., Wang, X., Pan, D., Yang, D., Li, W., Bao, C. (2018). Prefilter-Based Synchronous Reference Frame Phase-Locked Loop Techniques. In: Control Techniques for LCL-Type Grid-Connected Inverters . CPSS Power Electronics Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-4277-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4277-5_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4276-8

  • Online ISBN: 978-981-10-4277-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics