Skip to main content

A Transfer Learning Approach for Correcting Instrumental Variation and Time-Varying Drift

  • Chapter
  • First Online:
Breath Analysis for Medical Applications

Abstract

In this chapter, we propose drift correction autoencoder (DCAE) to deal with instrumental variation and time-varying drift of e-noses . DCAE learns to model and correct these influential factors explicitly with the help of transfer samples . It generates drift-corrected and discriminative representation of the original data, which can then be applied to various prediction algorithms. Experimental results show that DCAE outperforms typical drift correction algorithms and autoencoder-based transfer learning methods. In particular, it is better than TMTL in the last chapter in datasets with complex drift, at the cost of longer training time and more hyper-parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artursson T, Eklöv T, Lundström I, MÃ¥rtensson P, Sjöström M, Holmberg M (2000) Drift correction for gas sensors using multivariate methods. J Chemometr 14(5–6):711–723

    Article  Google Scholar 

  • Bengio Y (2012) Deep learning of representations for unsupervised and transfer learning. Unsupervised Transf Learn Chall Mach Learn 7:19

    Google Scholar 

  • Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  Google Scholar 

  • Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D, Bengio Y (2010) Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for scientific computing conference (SciPy), Austin, TX, vol 4, p 3

    Google Scholar 

  • Binfeng Y, Haibo J (2015) Near-infrared calibration transfer via support vector machine and transfer learning. Anal Methods 7(6):2714–2725

    Article  Google Scholar 

  • Chopra S, Balakrishnan S, Gopalan R (2013) Dlid: deep learning for domain adaptation by interpolating between domains. In: ICML workshop on challenges in representation learning, vol 2, p 5

    Google Scholar 

  • Deng J, Zhang Z, Eyben F, Schuller B (2014) Autoencoder-based unsupervised domain adaptation for speech emotion recognition. IEEE Signal Process Lett 21(9):1068–1072

    Article  Google Scholar 

  • Feudale RN, Woody NA, Tan H, Myles AJ, Brown SD, Ferré J (2002) Transfer of multivariate calibration models: a review. Chemometr Intell Lab 64(2):181–192

    Article  Google Scholar 

  • Glorot X, Bordes A, Bengio Y (2011) Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 513–520

    Google Scholar 

  • Kan M, Shan S, Chang H, Chen X (2014) Stacked progressive auto-encoders (spae) for face recognition across poses. In: 2014 IEEE conference on computer vision and pattern recognition

    Google Scholar 

  • Kandaswamy C, Silva LM, Alexandre LA, Santos JM, de Sá JM (2014) Improving deep neural network performance by reusing features trained with transductive transference. In: Artificial neural networks and machine learning–ICANN 2014. Springer, pp 265–272

    Google Scholar 

  • Längkvist M, Loutfi A (2011) Unsupervised feature learning for electronic nose data applied to bacteria identification in blood. In: NIPS 2011 workshop on deep learning and unsupervised feature learning

    Google Scholar 

  • Längkvist M, Coradeschi S, Loutfi A, Rayappan JBB (2013) Fast classification of meat spoilage markers using nanostructured Zno thin films and unsupervised feature learning. Sensors 13(2):1578–1592

    Article  Google Scholar 

  • Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn Lett 42:11–24

    Article  Google Scholar 

  • Liu Q, Li X, Ye M, Ge SS, Du X (2014) Drift compensation for electronic nose by semi-supervised domain adaption. IEEE Sens J 14(3):657–665

    Article  Google Scholar 

  • Marco S, Gutiérrez-Gálvez A (2012) Signal and data processing for machine olfaction and chemical sensing: a review. IEEE Sens J 12(11):3189–3214

    Article  Google Scholar 

  • Padilla M, Perera A, Montoliu I, Chaudry A, Persaud K, Marco S (2010) Drift compensation of gas sensor array data by orthogonal signal correction. Chemometr Intell Lab 100(1):28–35

    Article  Google Scholar 

  • Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  • Romain AC, Nicolas J (2010) Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview. Sens Actuators B: Chem 146(2):502–506

    Article  Google Scholar 

  • Vergara A, Vembu S, Ayhan T, Ryan MA, Homer ML, Huerta R (2012) Chemical gas sensor drift compensation using classifier ensembles. Sens Actuators B: Chem 166:320–329

    Article  Google Scholar 

  • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408

    MathSciNet  MATH  Google Scholar 

  • Yan K, Zhang D (2015) Improving the transfer ability of prediction models for electronic noses. Sens Actuators B: Chem 220:115–124

    Article  Google Scholar 

  • Yan K, Zhang D (2016a) Calibration transfer and drift compensation of e-noses via coupled task learning. Sens Actuators B: Chem 225:288–297

    Article  Google Scholar 

  • Yan K, Zhang D (2016b) Correcting instrumental variation and time-varying drift: a transfer learning approach with autoencoders. IEEE Trans Instrum Meas 65(9):2012–2022

    Google Scholar 

  • Yan K, Zhang D, Wu D, Wei H, Lu G (2014) Design of a breath analysis system for diabetes screening and blood glucose level prediction. IEEE Trans Biomed Eng 61(11):2787–2795

    Article  Google Scholar 

  • Zhang L, Zhang D (2015) Domain adaptation extreme learning machines for drift compensation in e-nose systems. IEEE Trans Instrum Meas 64(7):1790–1801

    Article  Google Scholar 

  • Zhang L, Chen C, Bu J, Cai D, He X, Huang TS (2011a) Active learning based on locally linear reconstruction. IEEE Trans Pattern Anal Mach Intell 33(10):2026–2038

    Article  Google Scholar 

  • Zhang L, Tian F, Kadri C, Xiao B, Li H, Pan L, Zhou H (2011b) On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality. Sens Actuators: B Chem 160(1):899–909

    Article  Google Scholar 

  • Zhou JT, Pan SJ, Tsang IW, Yan Y (2014) Hybrid heterogeneous transfer learning through deep learning. In: Twenty-eighth AAAI conference on artificial intelligence

    Google Scholar 

  • Zhuang F, Cheng X, Luo P, Pan SJ, He Q (2015) Supervised representation learning: transfer learning with deep autoencoders. In: Proceedings of the 24th international conference on artificial intelligence. AAAI Press, pp 4119–4125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, D., Guo, D., Yan, K. (2017). A Transfer Learning Approach for Correcting Instrumental Variation and Time-Varying Drift. In: Breath Analysis for Medical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4322-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4322-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4321-5

  • Online ISBN: 978-981-10-4322-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics