Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 401 Accesses

Abstract

Phase change memory has great potential for numerous attractive applications, especially in storage class memory, on the premise of its high-device performances, which still need to be improved by employing a material with good overall phase change properties. This chapter presents Ti-doped Sb-Te phase change materials in the hope of balancing the thermal stability and the operation rate of phase change memory. The component of Sb-Te is optimized. Compared to Ti-doped Sb2Te and Sb4Te alloy, Ti-doped Sb2Te3 has been proved to be the best candidate in respect of resistance ratio and device lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Lai, T. Lowrey, in IEDM Tech. Digest, (2001), pp. 36.5.1–36.5.4

    Google Scholar 

  2. M. Wutting, Nature Mater. 4, 265 (2005)

    Article  ADS  Google Scholar 

  3. D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, S.R. Elliott, Science 336, 1566 (2012)

    Article  ADS  Google Scholar 

  4. G.W. Burr et al., J. Vac. Sci. Technol. 28(2), 223 (2010)

    Article  Google Scholar 

  5. I. Fridrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wutting, J. Appl. Phys. 87, 4130 (2000)

    Article  ADS  Google Scholar 

  6. L. Rerniola et al., IEEE Electr. Device Lett. 31, 488 (2010)

    Article  ADS  Google Scholar 

  7. T.H. Jeong, M.R. Kim, H. Seo, J.W. Park, C. Yeon, Jpn. J. Appl. Phys. 39, 2775 (2000)

    Article  ADS  Google Scholar 

  8. B. Liu, T. Zhang, J.L. Xia, Z.T. Song, S.L. Feng, B. Chen, Semicond. Sci. Technol. 19, L61 (2004)

    Article  ADS  Google Scholar 

  9. K.B. Borisenko, Y.C.D.J.H. Cochayne, S.A. Song, H.S. Jeong, Acta Mater. 59, 4335 (2011)

    Article  Google Scholar 

  10. P. Noe, et al., in IEDM, (2012), p. 18.7.1

    Google Scholar 

  11. T.Y. Lee, S.S. Yim, D. Lee, M.H. Lee, D.H. Ahn, K.B. Kim, Appl. Phys. Lett. 89, 163503 (2006)

    Article  ADS  Google Scholar 

  12. W. Czubatyj, S.J. Hudgens, C. Dennison, C. Schell, T. Lowrey, I.E.E.E. Electr, Device Lett. 31, 869 (2010)

    Article  Google Scholar 

  13. C.M. Lee, et al., in VLSI Technol., (2007), p. 12

    Google Scholar 

  14. W.D. Song, L.P. Shi, X.S. Miao, T.C. Chong, Appl. Phys. Lett. 90, 091904 (2007)

    Article  ADS  Google Scholar 

  15. K. Yusu, T. Nakai, S. Ashida, N. Ohmachi, N. Morishita, N. Nakamura, in Proc. E\PCOS, (2005)

    Google Scholar 

  16. K. Wang, D. Wamwangi, S. Ziegler, C. Steimer, M. Wutting, J. Appl. Phys. 96, 5557 (2004)

    Article  ADS  Google Scholar 

  17. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, J. Appl. Phys. 69, 2849 (1991)

    Article  ADS  Google Scholar 

  18. M.H.R. Lankhorst, L.V. Rieterson, M.V. Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Jpn. J. Appl. Phys. 4, 863 (2003)

    Article  ADS  Google Scholar 

  19. N. Kh. Abrikosov, L. V. Poretskaya, I. P. Ivanova, Zh. Neorg. Khim, 4(11), 2525 (1959)

    Google Scholar 

  20. G. Ghosh, J. Phase Equilib. 15, 349 (1994)

    Article  Google Scholar 

  21. S. Fujimori, S. Yagi, H. Yamzaki, N. Funakoshi, J. Appl. Phys. 64, 1000 (1988)

    Google Scholar 

  22. B.K. Cheong, S. Lee, J.H. Jeong, S. Park, S. Han, Z. Wu, D.H. Ahn, Phys. Status Solidi B 2012, 10 (1985)

    Google Scholar 

  23. C. Drasar, M. Steinharta, P. Lost’ak, H, K. Shin, J.S. Dyck, C. Uher, J. Solid State. Chem. 178, 1301 (2005)

    Google Scholar 

  24. K. Kifune, Y. Kubota, T. Matsunaga, N. Yamada, Acta Crystallogr. Section B B61, 492 (2005)

    Article  Google Scholar 

  25. M. Zhu, L.W. Wu, F. Rao, Z.T. Song, X.L. Li, C. Peng, X.L. Zhou, K. Ren, D.N. Yao, S.L. Feng, J. Alloy Comp. 509, 10105 (2011)

    Article  Google Scholar 

  26. V.A. Kulbachinskii, N. Miura, H. Nakagawa, C. Drashar, P. Lostak, J. Phys. C: Solid State Phys. 11, 5273 (1999)

    Google Scholar 

  27. S.M. Yoon, S.Y. Lee, S.W. Jung, Y.S. Park, B.G. Yu, Solid-State Electron. 53, 557 (2009)

    Article  ADS  Google Scholar 

  28. M.H.R. Lankhorst, L.V. Rieterson, M.V. Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Jpn. J. Appl. Phys. 4, 863 (2003)

    Article  ADS  Google Scholar 

  29. R. M. Imamov, S. A. Semiletov, Sov. Phys. Crystallogr. 15(5), 845 (1971)

    Google Scholar 

  30. K. Kifue, T. Fujita, T. Tachizawa, Y. Kubota, N. Yamada, T. Matsunaga, Cryst. Res. Technol. 48(11), 1011–1021 (2013)

    Google Scholar 

  31. Y.J. Chien, Z. Zhou, G. Uher, J. Crystal, Growth 283, 309 (2005)

    Article  Google Scholar 

  32. K.F. Kao, H.Y. Cheng, C.A. Jong, C.J. Lan, T.S. Chin, IEEE Trans. Electron Devices 43, 930 (2007)

    Google Scholar 

  33. V.I. Kosyakov, V.A. Shestakov, L.E. Shelimova, F.A. Kuznetsov, V.S. Zemskov, Inorg. Mater. 36, 1196 (2000)

    Google Scholar 

  34. V. Agafonov, N. Rodier, R. Ceolin, R. Bellient, C. Bergman, J.P. Caspard, Acta Crystallogr. 47, 114 (1991)

    Google Scholar 

  35. M.S. Youm, Y.T. Kim, Y.H. Kim, M.Y. Sung, Phys. Stat. Sol. (a) 205, 1636 (2008)

    Article  ADS  Google Scholar 

  36. W.J. Wang, D. Loke, L.P. Shi, R. Zhao, H.X. Yang, L.T. Law, L.T. Ng, K.G. Lim, Y.C. Yeo, T.C. Chong, A.L. Lacaita, Scientific Reports N2, 360 (2012)

    Google Scholar 

  37. Y. Yin, Y. Yin, H. Sone, S. Hosaka, J. Appl. Phys. 10, 064503 (2007)

    Article  ADS  Google Scholar 

  38. Y. Cheng, Z.T. Song, Y.F. Gu, S.N. Song, F. Rao, L.C. Wu, B. Liu, S.L. Feng, Appl. Phys. Lett. 253, 6125 (2007)

    Google Scholar 

  39. J. Feng, Z. F. Zhang, Y. Zhang, B. C. Cai, J. Appl. Phys. 101, 074502 (2007)

    Google Scholar 

  40. S. Maitrejean, et al., in IEEE IITC/MAM, (2010), p. 13

    Google Scholar 

  41. K.F. Kao, C.M. Lee, M.J. Chen, M.J. Tsai, T.S. Chin, Adv. Mater. 21, 1695 (2009)

    Article  Google Scholar 

  42. M. Boniardi, A. Redaelli, A. Pirovano, I. Tortorelli, D. lelmini, F. Pellizzer, J. Appl. Phys. 105, 084506 (2009)

    Article  ADS  Google Scholar 

  43. M. Boniardi, D. lelmini, Appl. Phys. Lett. 98, 243506 (2011)

    Google Scholar 

  44. S.B. Kim, B. Lee, M. Asheghi, F. Hurkx, J.P. Reifenberg, K.E. Goodson, H.S.P. Wong, I.E.E.E. Trans, Electron Devices 58, 584 (2011)

    Article  ADS  Google Scholar 

  45. D. lelmini, A.L. Lacaita, Mater. Today 14, 600 (2011)

    Google Scholar 

  46. S. Braga, A. Cabrini, G. Torelli, Appl. Phys. Lett. 94, 092112 (2009)

    Article  ADS  Google Scholar 

  47. N.M.J. Conway, A. llie, J. Robertson, W.I. Milne, A. Tagliaferro, Appl. Phys. Lett. 73, 2456 (1998)

    Article  ADS  Google Scholar 

  48. M. Zhu, L.C. Wu, Z.T. Song, F. Rao, D. Cai, C. Peng, X.L. Zhou, K. Ren, S.N. Song, B. Liu, S.L. Feng, Appl. Phys. Lett. 100, 122101 (2012)

    Article  ADS  Google Scholar 

  49. M. Zhu, L. Wu, F. Rao, Z. Song, X. Ji, D. Yao, Y. Cheng, S. Lv, S. Song, B. Liu, Xu Ling, J. Appl. Phys. 114, 124302 (2013)

    Article  ADS  Google Scholar 

  50. S.J. Ahn, Y.J. Song, C.W. Jeong, J.M. Shin, Y. Fai, Y.N. Hwang, S.H. Lee, K.C. Ryoo, S.Y. Lee, J.H. Park, et al., in IEEE Electron Devices Meeting, (2004), pp. 907–910

    Google Scholar 

  51. G.R. Miller, Che-Yu. Li, J. Phys. Chem. Solids 26, 173 (1965)

    Article  ADS  Google Scholar 

  52. Z. Stary, J. Horak, M. Stordeur, M. Stolzer, J. Phys. Chem. Solids 49, 9 (1988)

    Article  Google Scholar 

  53. Y. Yin, H. Sone, S. Hosaka, J. Appl. Phys. 102, 064503 (2007)

    Article  ADS  Google Scholar 

  54. M. Chen, K.A. Rubin, R.W. Barton, Appl. Phys. Lett. 49, 502 (1986)

    Article  ADS  Google Scholar 

  55. S.W. Ryu, J.H. Oh, B.J. Choi, S.Y. Hwang, S.K. Hong, C.S. Hwang, H.J. Kim, Electrochem. Solid-State Lett. 9, G259 (2006)

    Article  Google Scholar 

  56. F. Rao, Z.T. Song, K. Ren, X.L. Zhou, Y. Cheng, L.C. Wu, B. Liu, Nanotechnology 22, 145702 (2011)

    Article  ADS  Google Scholar 

  57. T.H. Jeong, M.R. Kim, J.W. Park, C. Yeon, Jpn. J. Appl. Phys. 39, 2775 (2000)

    Article  ADS  Google Scholar 

  58. M.H.R. Lankhorst, L.V. Pieterson, M.V. Schijnedl, B.A.J. Jacobs, J.C.N. Rijpers, Jpn. J. Appl. Phys. 42, 863 (2003)

    Article  ADS  Google Scholar 

  59. W.J. Wang, D. Loke, L.P. Shi, R. Zhao, H.X. Yang, L.T. Law, L.T. Ng, K.G. Lim, Y.C. Yeo, T.C. Chong, A.L. Lacaita, Scientific Reports 2, 360 (2012)

    Google Scholar 

  60. D.H. Ahn, S.L. Cho, H. Horill, D.H. Im, I.S. Kim, G.H. Oh, S.O. Park, M.S. Kang, S.W. Nam, C.H. Chung, in Proc. EPCOS, (2010), pp. 87

    Google Scholar 

  61. M. Zhu, L.C. Wu, F. Rao, Z.T. Song, X.L. Ji, D.N. Yao, Y. Cheng, S.L. Lv, S.N. Song, B. Li, L. Xu, Appl. Phys. Lett. 114, 124302 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhu, M. (2017). Component Optimization of Sb–Te for Ti–Sb–Te Alloy . In: Ti-Sb-Te Phase Change Materials: Component Optimisation, Mechanism and Applications. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4382-6_2

Download citation

Publish with us

Policies and ethics