Skip to main content

Testing the Kerr Paradigm with X-Ray Observations

  • Chapter
  • First Online:
Black Holes: A Laboratory for Testing Strong Gravity
  • 1178 Accesses

Abstract

The chapter briefly reviews current attempts to test the Kerr metric around astrophysical black holes with the continuum-fitting method, X-ray reflection spectroscopy, and quasi-periodic oscilations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The analysis reported in [20] is slightly different, because \(\dot{M}\) is inferred from the measurement of the radiative efficiency. See [20] for more details.

  2. 2.

    Since the metric of the spacetimes III, IV, and V is given numerically, the precision of the calculations is lower and a smaller accretion disk is employed. The “wiggles” in the shape of these lines are due to resolution effects of the numerical metric.

  3. 3.

    XSPEC is an X-ray spectral-fitting software commonly used in X-ray astronomy. See [2] and http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/index.html for more details.

References

  1. A.N. Aliev, G.D. Esmer, P. Talazan, Class. Quant. Grav. 30, 045010 (2013), arXiv:1205.2838 [gr-qc]

  2. K.A. Arnaud, Astronomical Data Analysis Software and Systems V, vol. 101 (1996), p. 17

    Google Scholar 

  3. C. Bambi, JCAP 1105, 009 (2011), arXiv:1103.5135 [gr-qc]

  4. C. Bambi, Phys. Lett. B 705, 5 (2011), arXiv:1110.0687 [gr-qc]

  5. C. Bambi, JCAP 1209, 014 (2012), arXiv:1205.6348 [gr-qc]

  6. C. Bambi, Eur. Phys. J. C 75, 162 (2015), arXiv:1312.2228 [gr-qc]

  7. C. Bambi, J. Jiang, J.F. Steiner, Class. Quant. Grav. 33, 064001 (2016), arXiv:1511.07587 [gr-qc]

  8. C. Bambi, A. Cardenas-Avendano, T. Dauser, J.A. Garcia, S. Nampalliwar, arXiv:1607.00596 [gr-qc]

  9. C. Bambi, S. Nampalliwar, Europhys. Lett. 116, 30006 (2016), arXiv:1604.02643 [gr-qc]

  10. E. Barausse, V. Cardoso, G. Khanna, Phys. Rev. Lett. 105, 261102 (2010), arXiv:1008.5159 [gr-qc]

  11. M.E. Beer, P. Podsiadlowski, Mon. Not. Roy. Astron. Soc. 331, 351 (2002), arXiv:astro-ph/0109136

  12. Z. Cao, A. Cardenas-Avendano, M. Zhou, C. Bambi, C.A.R. Herdeiro, E. Radu, JCAP 1610, 003 (2016), arXiv:1609.00901 [gr-qc]

  13. B. Giacomazzo, L. Rezzolla, N. Stergioulas, Phys. Rev. D 84, 024022 (2011), arXiv:1105.0122 [gr-qc]

  14. J. Jiang, C. Bambi, J.F. Steiner, JCAP 1505, 025 (2015), arXiv:1406.5677 [gr-qc]

  15. J. Jiang, C. Bambi, J.F. Steiner, Astrophys. J. 811, 130 (2015), arXiv:1504.01970 [gr-qc]

  16. J. Jiang, C. Bambi, J.F. Steiner, Phys. Rev. D 93, 123008 (2016), arXiv:1601.00838 [gr-qc]

  17. T. Johannsen, D. Psaltis, Astrophys. J. 726, 11 (2011), arXiv:1010.1000 [astro-ph.HE]

  18. P.S. Joshi, D. Malafarina, Int. J. Mod. Phys. D 20, 2641 (2011), arXiv:1201.3660 [gr-qc]

  19. P.S. Joshi, D. Malafarina, R. Narayan, Class. Quant. Grav. 31, 015002 (2014), arXiv:1304.7331 [gr-qc]

  20. L. Kong, Z. Li, C. Bambi, Astrophys. J. 797, 78 (2014), arXiv:1405.1508 [gr-qc]

  21. R. Konoplya, A. Zhidenko, Phys. Lett. B 756, 350 (2016), arXiv:1602.04738 [gr-qc]

  22. H. Krawczynski, Astrophys. J. 754, 133 (2012), arXiv:1205.7063 [gr-qc]

  23. D. Liu, Z. Li, Y. Cheng, C. Bambi, Eur. Phys. J. C 75, 383 (2015), arXiv:1504.06788 [gr-qc]

  24. J. Liu, J. McClintock, R. Narayan, S. Davis, J. Orosz, Astrophys. J. 679, L37 (2008) [Erratum: Astrophys. J. 719, L109 (2010)], arXiv:0803.1834 [astro-ph]

  25. A. Maselli, L. Gualtieri, P. Pani, L. Stella, V. Ferrari, Astrophys. J. 801, 115 (2015), arXiv:1412.3473 [astro-ph.HE]

  26. S.E. Motta, T.M. Belloni, L. Stella, T. Muoz-Darias and R. Fender. Mon. Not. Roy. Astron. Soc. 437, 2554 (2014), arXiv:1309.3652 [astro-ph.HE]

  27. Y. Ni, J. Jiang, C. Bambi, JCAP 1609, 014 (2016), arXiv:1607.04893 [gr-qc]

  28. Y. Ni, M. Zhou, A. Cardenas-Avendano, C. Bambi, C.A.R. Herdeiro, E. Radu, JCAP 1607, 049 (2016), arXiv:1606.04654 [gr-qc]

  29. P. Pani, E. Barausse, E. Berti, V. Cardoso, Phys. Rev. D 82, 044009 (2010), arXiv:1006.1863 [gr-qc]

  30. R. Penrose, Riv. Nuovo Cim. 1, 252 (1969) [Gen. Rel. Grav. 34, 1141 (2002)]

    Google Scholar 

  31. U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, T. Hinderer, N. Yunes, Phys. Rev. Lett. 103, 131102 (2009), arXiv:0907.1252 [gr-qc]

  32. Z. Stuchlik, A. Kotrlova, Gen. Rel. Grav. 41, 1305 (2009), arXiv:0812.5066 [astro-ph]

  33. M. Zhou, A. Cardenas-Avendano, C. Bambi, B. Kleihaus, J. Kunz, Phys. Rev. D 94, 024036 (2016), arXiv:1603.07448 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Bambi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bambi, C. (2017). Testing the Kerr Paradigm with X-Ray Observations. In: Black Holes: A Laboratory for Testing Strong Gravity. Springer, Singapore. https://doi.org/10.1007/978-981-10-4524-0_13

Download citation

Publish with us

Policies and ethics