Skip to main content

Texture Analysis of Ultrasound Images of Liver Cirrhosis Through New Indexes

  • Chapter
  • First Online:
Innovations in Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 713))

Abstract

In health care, one of the most regular diseases is considered that is liver cirrhosis. The mostly accepted method in the identification of liver cirrhosis is by use of ultrasonic images. In this research paper, a method is proposed for identifying the cirrhotic liver through images of ultrasound. The portion of interest has extracted in the cirrhotic and normal ultrasonic images and approved through a radiologist. The cirrhotic liver’s recognition is discriminated through new two indexes, i.e., area index and ratio index. The results from the projected new indexes verified its practicability and applicability for recognition of cirrhotic liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Virmani, V. Kumar, N. Kalra, N. Khandelwal, Prediction of cirrhosis based on singular value decomposition of gray level co-occurence matrix and a neural network classifier, in Proceeding of IEEE Conference: Developments in E-systems Engineering, pp. 146–151, Dec 2011

    Google Scholar 

  2. K. Fujino, Y. Mitani, Y. Fujita, Y. Hamamoto, I. Sakaida, Liver cirrhosis classification on m-mode ultrasound images by higher-order local auto-correlation features. J. Med. Bio. 3(1), 29–32 (2014)

    Google Scholar 

  3. K. Aggarwal, M.J. Bhamrah, H.S. Ryait, The identification of liver cirrhosis with modified LBP grayscaling and Otsu binarization. Springerplus 5(1), 1–15 (2016)

    Article  Google Scholar 

  4. J.W. Jeong, S. Lee, J.W. Lee, D.S. Yoo, S. Kim, The echotextural characteristics for the diagnosis of the liver cirrhosis using the sonographic images, in Proceeding of IEEE Conference: Engineering in Medicine and Biology Society, pp. 1343–1345, 2007

    Google Scholar 

  5. D. Mitrea, S. Nedevschi, R. Badea, The role of the multiresolution textural features in improving the characterization and recognition of the liver tumors, based on ultrasound images, in International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp. 192–199, Sept 2012

    Google Scholar 

  6. R.M. Hawlick, Statistical and structural approaches to texture. Proc. IEEE Conf. 67(5), 786–808 (1979)

    Article  Google Scholar 

  7. G. Castellano, L. Bonilha, L.M. Li, F. Cendes, Texture analysis of medical images. Clin. Radiol. 59, 1061–1069 (2004)

    Article  Google Scholar 

  8. http://digestive.niddk.nih.gov/ddiseases/pubs/cirrhosis_ez

  9. C.C. Wu, W.L. Lee, Y.C. Chen, K.S. Hsieh, Evolution-based hierarchical feature fusion for ultrasonic liver tissue characterization. IEEE J. Bio. Health Inform. 17(5), 967–976 (2013)

    Article  Google Scholar 

  10. W.L. Lee, An ensemble-based data fusion approach for characterizing ultrasonic liver tissue. Appl. Soft Comput. 13(8), 3683–3692 (2013)

    Article  Google Scholar 

  11. C.C. Wu, W.L. Lee, Y.C. Chen, C.H. Lai, K.S. Hsieh, Ultrasonic liver tissue characterization by feature fusion. Expert Syst. Appl. 39(10), 9389–9397 (2012)

    Article  Google Scholar 

  12. K.L. Caballero, J. Barajas, O. Pujol, N. Salvatella, P. Radeva, In-vivo IVUS tissue classification a comparison between normalized image reconstruction and RF signals. Prog. Pattern Recogn. Image Anal. Appl. 4225, 137–146 (2006)

    Google Scholar 

  13. O. Pujol, D. Rotger, P. Radeva, O. Rodriguez, J. Mauri, Near real-time plaque segmentation of IVUS. Comput. Cardiol. 30, 69–72 (2003)

    Google Scholar 

  14. E. Brunenberg, O. Pujol, B.H. Romeny, P. Radeva, Automatic IVUS segmentation of atherosclerotic plaque with stop & go snake. Med. Image Comput. Comput. Assist. Interv. 4191, 9–16 (2006)

    Google Scholar 

  15. T. Ojala, M. Pietikäinen, D. Harwood, A comparative study of texture measures with classification based on featured distribution. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  16. A. Hadid, M. Pietikainen, T. Ahonen, A discriminative feature space for detecting and recognizing faces, in Proceeding of International Conference: Computer Vision Pattern Recognition, pp. 797–804, 2004

    Google Scholar 

  17. D. Grangier, S. Bengio, A discriminative kernel-based approach to rank images from text queries. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1371–1384 (2008)

    Article  Google Scholar 

  18. W. Ali, F. Georgsson, T. Hellstrom, Visual tree detection for autonomous navigation in forest environment, in Proceeding of IEEE Conference: Intelligent Vehicles Symposium, pp. 560–565, June 2008

    Google Scholar 

  19. L. Nanni, A. Lumini, Ensemble of multiple pedestrian representations. IEEE Trans. Intell. Transp. Syst. 9(2), 365–369 (2008)

    Article  Google Scholar 

  20. T. Maenpaa, J. Viertola, M. Pietikainen, Optimising colour and texture features for real-time visual inspection. Pattern Anal. Appl. 6(3), 169–175 (2003)

    Article  MathSciNet  Google Scholar 

  21. M. Turtinen, M. Pietikainen, O. Silven, Visual characterization of paper using Isomap and local binary patterns. IEICE Trans. Inf. Syst. E89D(7), 2076–2283 (2006)

    Article  Google Scholar 

  22. M. Heikkila, M. Pietikainen, A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)

    Article  Google Scholar 

  23. V. Kellokumpu, G. Zhao, M. Pietikainen, Human activity recognition using a dynamic texture based method, in Proceeding of British Machine Vision Conference (Leeds, UK, 2008)

    Google Scholar 

  24. A. Oliver, X. Llado, J. Freixenet, J. Marti, False positive reduction in mammographic mass detection using local binary patterns, in Proceeding of Medical Image Computing and Computer-Assisted Intervention Conference, pp. 286–293, 2007

    Google Scholar 

  25. S. Kluckner, G. Pacher, H. Grabner, H.A. Bischof, 3D teacher for car detection in aerial images, in Proceeding of IEEE International Conference: Computer Vision, pp. 1–8, 2007

    Google Scholar 

  26. A. Lucieer, A. Stein, P. Fisher, Multivariate texture-based segmentation of remotely sensed imagery for extraction of objects and their uncertainty. Int. J. Remote Sens. 26(14), 2917–2936 (2005)

    Article  Google Scholar 

  27. R. Rodríguez, A strategy for blood vessels segmentation based on the threshold which combines statistical and scale space filter: application to the study of angiogenesis. Comput. Methods Programs Biomed. 82(1), 1–9 (2006)

    Article  Google Scholar 

  28. D.Y. Huang, C.H. Wang, Optimal multi-level thresholding using a two-stage Otsu optimization approach. Pattern Recogn. Lett. 30(3), 275–284 (2009)

    Article  Google Scholar 

  29. A. Tamim, K. Minaoui, K. Daoudi, H. Yahia, A. Atillah, D. Aboutajdine, An efficient tool for automatic delimitation of moroccan coastal upwelling using SST images. IEEE Geosci. Remote Sens. Lett. 12(4), 875–879 (2015)

    Article  Google Scholar 

  30. P. Filipczuk, T. Fevens, A. Krzyżak, Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 32(12), 2169–2178 (2013)

    Article  Google Scholar 

  31. T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  32. N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  33. A.K. Chaou, A. Mekhaldi, M. Teguar, Elaboration of novel image processing algorithm for arcing discharges recognition on HV polluted insulator model. IEEE Trans. Dielectr. Electr. Insul. 22(2), 990–999 (2015)

    Article  Google Scholar 

  34. S. Murala, Q.M. Jonathan, Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J. Bio. Health Inform. 18(3), 929–938 (2014)

    Article  Google Scholar 

  35. Y. Hu, C. Zhao, A local binary pattern based methods for pavement crack detection. J. Pattern Recogn. Res. 140–147 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karan Aggarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, K., Bhamrah, M.S., Ryait, H.S. (2018). Texture Analysis of Ultrasound Images of Liver Cirrhosis Through New Indexes. In: Panda, B., Sharma, S., Batra, U. (eds) Innovations in Computational Intelligence . Studies in Computational Intelligence, vol 713. Springer, Singapore. https://doi.org/10.1007/978-981-10-4555-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4555-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4554-7

  • Online ISBN: 978-981-10-4555-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics