Skip to main content

Nanosensors: Frontiers in Precision Agriculture

  • Chapter
  • First Online:
Nanotechnology

Abstract

In the last decennium, nanotechnology has earned strength in and become the influential gizmo in current agriculture. Nanotechnology can boost agricultural production by improving nutrient use efficiency with nanoformulations of fertilizers; agrochemicals for crop enhancement, detection and treatment of diseases, host-parasite interactions at the molecular level using nanosensors, plant disease diagnostics, contaminants removal from soil and water, postharvest management of vegetables and flowers, and reclamation of salt-affected soils; etc. Nanobiosensors can be also employed for sensing a wide variety of pathogens, fertilizers, moisture and soil pH aiming to remove plant protection product applications, reduce loss of nutrients, and enhance crop yields through good nutrient management. Here we review nanotechnology applications for agriculture production, metal oxide-based nanosensors for protection of crops from diseases caused by bacteria and counter microbial attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Bellingham BK (2011) Proximal soil sensing. Vadose Zone J 10:1342–1342. doi:10.2136/vzj2011.0105br

    Article  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Chiu T-C, Huang C-C (2009) Aptamer-functionalized nano-biosensors. Sensors 9:10356–10388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva AC, Deda DK, da Roz AL et al (2013) Nanobiosensors based on chemically modified AFM probes: a useful tool for metsulfuron-methyl detection. Sensors (Basel) 13(2):1477–1489

    Article  Google Scholar 

  • Du D, Chen S, Cai J, Zhang A (2008a) Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface. Talanta 74(4):766–772. doi:10.1016/j.talanta.2007.07.014

    Article  CAS  PubMed  Google Scholar 

  • Du D, Chen S, Song D, Li H, Chen X (2008b) Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosens Bioelectron 24(3):475–479. doi:10.1016/j.bios.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  • El Beyrouthya M, El Azzi D (2014) Nanotechnologies: novel solutions for sustainable agriculture. Adv Crop Sci Technol 2:e118. doi:10.4172/2329-8863.1000e118

    Article  Google Scholar 

  • Farrell D, Hoover M, Chen H, Friedersdorf L (2013) Overview of resources and support for nanotechnology for sensors and sensors for nanotechnology: improving and protecting health, safety, and the environment. US National Nanotechnology Initiative, Arlington. http://nano.gov/sites/default/files/pub_resource/nsi_nanosensors_resources_for_web.pdf

    Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Jones PBC (2014) A nanotech revolution in agriculture and the food industry. Information Systems for Biotechnology, Blacksburg. http://www.isb.vt.edu/articles/jun0605.htm

  • Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005) A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 17:54–58

    Article  CAS  Google Scholar 

  • Kang TF, Wang F, Lu LP, Zhang Y, Liu TS (2010) Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes. Sensor Actuat B-Chem 145:104e109

    Article  Google Scholar 

  • Kaushik A, Solanki PR, Ansarib AA, Malhotra BD, Ahmad S (2009) Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochem Eng J 46:132–140

    Article  CAS  Google Scholar 

  • Krejcova L, Michalek P, Rodrigo MM, Heger Z, Krizkova S, Vaculovicova M, Hynek D, Adam V, Kizek R (2015) Nanoscale virus biosensors: state of the art. Nanobiosensors in Disease Diagnosis 4:47–66. doi:10.2147/NDD.S56771

    Google Scholar 

  • Kumaravel A, Chandrasekaran M (2011) A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion. J Electroanal Chem 650:163e170

    Article  Google Scholar 

  • Li Y, Cu YT, Luo D (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23(7):885–889

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang C, Hua S (2006a) Development of a parathion sensor based on molecularly imprinted nano-TiO2 self-assembled film electrode. Sensor Actuat B-Chem 117:166e171

    Google Scholar 

  • Li XH, Xie Z, Min H, Li C, Liu M, Xian YJ (2006b) Development of quantum dots modified acetylcholinesterase biosensor for the detection of Trichlorfon. Electroanalysis 18(22):2163–2167. doi:10.1002/elan.200603615

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tong Z, Prud’homme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64:808–812

    Article  CAS  PubMed  Google Scholar 

  • Lopez MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13e46

    Google Scholar 

  • McKeague Maureen, Giamberardino Amanda, De Rosa C Maria (2011) Advances in aptamer-based biosensors for food safety. In: Vernon Somerset (ed) Environ Biosensors. INTECH, Janeza Trdine 9, 51000 Rijeka, Croatia – EUROPEAN UNION. ISBN: 978–953–307-4863

    Google Scholar 

  • McLamore ES, Diggs A, Calvo Marzal P et al (2010) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63(6):1004–1016

    Article  CAS  PubMed  Google Scholar 

  • Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2015) The application of nanotechnology for micronutrients in soil-plant systems, VFRC Report 2015/3. Virtual Fertilizer Research Center, Washington, DC, p 44

    Google Scholar 

  • Mousavi SR, Rezaei M (2010) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. doi:10.1016/j.plantsci.2010.04.012

    Article  CAS  Google Scholar 

  • Otles S, Yalcin B (2010) Nano-biosensors as new tool for detection of food quality and safety. Log Forum 6(4):67–70

    Google Scholar 

  • Parham H, Rahbar N (2010) Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode. J Hazard Mater 177:1077e1084

    Article  Google Scholar 

  • Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? NanoToday 10:124–127. doi:10.1016/j.nantod.2014.09.009

    Article  CAS  Google Scholar 

  • Patolsky F, Zheng G, Lieber C (2006) Nanowire-based biosensors. Anal Chem 78:4260–4269

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014:Article ID 963961. http://dx.doi.org/10.1155/2014/963961

    Article  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi:10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi:10.3389/fmicb.2017.01014

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotchnol 3:315–324

    Article  CAS  Google Scholar 

  • Ramanathan M, Luckarift HR, Sarsenova A, Wild JR, Ramanculov ER, Olsen EV et al (2009) Lysozyme-mediated formation of protein–silica nano-composites for biosensing applications. Colloids Surf B: Biointerfaces 73:58–64

    Article  CAS  PubMed  Google Scholar 

  • Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54. doi:10.1016/j.bbrep.2015.11.010

    Google Scholar 

  • Roda A, Mirasoli M, Michelini E, Massimo DF, Zangheri M, Cevenini L, Barbara PS (2016) Progress in chemical luminescence-based biosensors: a critical review. Biosens Bioelectron 76:164–179. doi:10.1016/j.bios.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. doi:10.2147/NSA.S39406

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo S, Dobozi-King M, Young RF, Kish LB, Cheng M (2008) Patterning a nanowell sensor biochip for specific and rapid detection of bacteria. Microelectron Eng 85(7):1484–1489. doi:10.1016/j.mee.2007.12.046

    Article  CAS  Google Scholar 

  • Sharma P, Sablok K, Bhalla V, Suri CR (2011) A novel disposable electrochemical immunosensor for phenyl urea herbicide Diuron. Biosens Bioelectron 26(10):4209–4212. doi:10.1016/j.bios.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Singh SC, Kumar S, Lal B, Singh NB (2010) Effect of titanium dioxide nanoparticles on the growth and biochemical parameters of Brassica oleracea. In: Riberio C, de-Assis OBG, Mattoso LHC, Mascarenas S (eds), Symposium of International conference on Food and Agricultural Applications of Nanotechnologies. Sao Pedro, SP, Brazil

    Google Scholar 

  • Su HC, Zhang M, Bosze W, Lim JH, Myung NV (2013) Metal nanoparticles and DNA co-functionalized single-walled carbon nanotube gas sensors. Nanotechnology 24(50):502–505

    Article  Google Scholar 

  • Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Sun H, Fung Y (2006) Piezoelectric quartz crystal sensor for rapid analysis of pirimicarb residues using molecularly imprinted polymers as recognition elements. Anal Chim Acta 576:67e76

    Google Scholar 

  • Sun D, Hussain H, Yi Z, Siegele R, Cresswell T, Kong L, Cahill D (2014) Uptake and cellular distribution, in four plant species, of fluorescently labelled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Tereshchenko A, Bechelany M, Roman V, Volodymyr K, Valentyn NS, Yakimova R (2016) Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review. Sensors Actuators B Chem 229:664–671. doi:10.1016/j.snb.2016.01.099

    Article  CAS  Google Scholar 

  • Thakkar MN, Mhatre S, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanotechol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • The Royal Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. The Royal Society, London

    Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848e2853

    Google Scholar 

  • Velasco-Garcia MN (2014) Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Semin Cell Dev Biol 20(1):27–33

    Article  Google Scholar 

  • Vinayaka AC, Basheer S, Thakur MS (2009) Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens Bioelectron 24:1615–1620

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24:2772e2777

    Google Scholar 

  • Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18(6):533–550

    Article  CAS  Google Scholar 

  • Wang M, Li Z (2008) Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensor Actuat B-Chem 133:607e612

    Google Scholar 

  • Wang Z, Wei F, Liu SY, Xu Q, Huang JY, Dong XY, Yua JH, Yang Q, Zhao YD, Chen H (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80:1277e1281

    Google Scholar 

  • Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014) Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal Chem 86(24):11937–11941. doi:10.1021/ac5028726

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Yang M, Duan YX (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114:6130–6178. doi:10.1021/cr200359p

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Anthony SM, Bae SC, Luijten E, Granick S (2009) Biomolecular science of liposome nanoparticle constructs. Mol Cryst Liq Cryst 507:18–25

    Article  CAS  Google Scholar 

  • Zhao S, Jhang H, Wang W, Mao B (2007) Cloning and developmental expression of the Xenopus Nkx6 genes. Dev Genes E 6:217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kaushal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kaushal, M., Wani, S.P. (2017). Nanosensors: Frontiers in Precision Agriculture. In: Prasad, R., Kumar, M., Kumar, V. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4573-8_13

Download citation

Publish with us

Policies and ethics