Skip to main content

Regulation of the Heat Shock Response in Bacteria

  • Chapter
  • First Online:
Prokaryotic Chaperonins

Part of the book series: Heat Shock Proteins ((HESP,volume 11))

Abstract

Bacteria sense temperature changes in many ways and have developed different strategies to respond to these changes. A sudden increase in temperature results in protein unfolding, and the level of unfolded proteins seems to be the primary signal that triggers the heat shock response. Four different systems have been described so far involved in temperature sensing: alternative sigma factors, transcriptional repressors, and RNA and DNA thermosensors. Furthermore, titration of molecular chaperones serves as mediators in some cases. All four mechanisms will be described in detail and illustrated by prominent examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alba BM, Zhong HJ, Pelayo JC, Gross CA (2001) degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide σE activity. Mol Microbiol 40:1323–1333

    Article  CAS  PubMed  Google Scholar 

  • Atlung T, Ingmer H (1997) H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 24:7–17

    Article  CAS  PubMed  Google Scholar 

  • Balsiger S, Ragaz C, Baron C, Narberhaus F (2004) Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens. J Bacteriol 186:6824–6829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blyn LB, Braaten BA, White-Ziegler CA, Rolfson DH, Low DA (1989) Phase-variation of pyelonephritis-associated pili in Escherichia coli: evidence for transcriptional regulation. EMBO J 8:613–620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bohme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK, Berger E, Pisano F, Thiermann T, Wolf-Watz H, Narberhaus F, Dersch P (2012) Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 8:e1002518

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucca G, Smith CP, Alberti M, Seidita G, Passantino R, Puglia AM (1993) Cloning and sequencing of the dnaK region of Streptomyces coelicolor A3(2). Gene 130:141–144

    Article  CAS  PubMed  Google Scholar 

  • Bucca G, Brassington AME, Schönfeld H-J, Smith CP (2000) The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressor. Mol Microbiol 38:1093–1103Streptomyces coelicolor

    Google Scholar 

  • Campbell EA, Tupy JL, Gruber TM, Wang S, Sharp MM, Gross CA, Darst SA (2003) Crystal structure of Escherichia coli sigma (E) with the cytoplasmic domain of its anti-sigma factor. Mol Cell 11:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Cezairliyan BO, Sauer RT (2007) Inhibition of regulated proteolysis by RseB. Proc Natl Acad Sci U S A 104:3771–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaba R, Grigorova IL, Flynn JM, Baker TA, Gross CA (2007) Design principles of the proteolytic cascade governing the σE-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes Dev 21:124–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cumberlidge AG, Isono K (1979) Ribosomal protein modification in Escherichia coli. I. A mutant lacking the N-terminal acetylation of protein S5 exhibits thermosensitivity. J Mol Biol 131:169–189

    Google Scholar 

  • Daguer JP, Chambert R, Petit-Glatron MF (2005) Increasing the stability of sacB transcript improves levansucrase production in Bacillus subtilis. Lett Appl Microbiol 41:221–226

    Article  CAS  PubMed  Google Scholar 

  • Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56:858–870

    Article  CAS  PubMed  Google Scholar 

  • De Las PA, Connolly L, Gross CA (1997) The σE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE. Mol Microbiol 24:373–385

    Google Scholar 

  • Derré I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 31:117–131

    Google Scholar 

  • Derré I, Rapoport G, Msadek T (2000) The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37°C. Mol Microbiol 38:335–347

    Google Scholar 

  • Dorman CJ (2004) H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Duong N, Osborne S, Bustamante VH, Tomljenovic AM, Puente JL, Coombes BK (2007) Thermosensing coordinates a cis-regulatory module for transcriptional activation of the intracellular virulence system in Salmonella enterica serovar Typhimurium. J Biol Chem 282:34077–34084

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Van der Vies SM, Hemmingsen SM (1989) The molecular chaperone concept. Biochem Soc Symp 55:145–153

    CAS  PubMed  Google Scholar 

  • Elsholz AK, Hempel K, Pother DC, Becher D, Hecker M, Gerth U (2011) CtsR inactivation during thiol-specific stress in low GC, Gram+ bacteria. Mol Microbiol 79:772–785

    Article  CAS  PubMed  Google Scholar 

  • Falconi M, Colonna B, Prosseda G, Micheli G, Gualerzi CO (1998) Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J 17:7033–7043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes ND, Wu QL, Kong D, Puyang X, Garg S, Husson RN (1999) A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress. J Bacteriol 181:4266–4274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann J, Schmidt A, Spiess S, Lehner A, Turgay K, Mechtler K, Charpentier E, Clausen T (2009) McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324:1323–1327

    Article  CAS  PubMed  Google Scholar 

  • Gamer J, Bujard H, Bukau B (1992) Physical interactions between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69:833–842

    Article  CAS  PubMed  Google Scholar 

  • Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rüdiger S, Schönfeld HJ, Schirra C, Bujard H, Bukau B (1996) A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor σ32. EMBO J 15:607–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez JE, Chen JM, Bishai WR (1997) Sigma factors of Mycobacterium tuberculosis. Tuber Lung Dis 78:175–183

    Article  CAS  PubMed  Google Scholar 

  • Guglielmi G, Mazodier P, Thompson CJ, Davies J (1991) A survey of the heat shock response in four Streptomyces species reveals two groEL-like genes and three GroEL-like proteins in Streptomyces albus. J Bacteriol 173:7374–7381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guisbert E, Herman C, Lu CZ, Gross CA (2004) A chaperone network controls the heat shock response in E-coli. Genes Dev 18:2812–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guisbert E, Yura T, Rhodius VA, Gross CA (2008) Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 72:545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman C, Thévenet D, D’Ari R, Bouloc P (1995) Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci U S A 92:3516–3520

    Google Scholar 

  • Ho TD, Ellermeier CD (2012) Extra cytoplasmic function σ factor activation. Curr Opin Microbiol 15:182–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homuth G, Masuda S, Mogk A, Kobayashi Y, Schumann W (1997) The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol 179:1153–1164

    Google Scholar 

  • Kanehara K, Ito K, Akiyama Y (2002) YaeL (EcfE) activates the σE pathway of stress response through a site-2 cleavage of anti-σE, RseA. Genes Dev 16:2147–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehara K, Ito K, Akiyama K (2003) YaeL proteoylsis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA. EMBO J 22:6389–6398

    Google Scholar 

  • Kanemori M, Nishihara K, Yanagi H, Yura T (1997) Synergistic roles of Hs1VU and other ATP-dependent proteases in controlling in vivo turnover of σ32 and abnormal proteins in Escherichia coli. J Bacteriol 179:7219–7225

    Google Scholar 

  • Kim DY, Jin KS, Kwon E, Ree M, Kim KK (2007) Crystal structure of RseB and a model of its binding mode to RseA. Proc Natl Acad Sci U S A 104:8779–8784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DY, Kwon E, Choi J, Hwang HY, Kim KK (2010) Structural basis for the negative regulation of bacterial stress response by RseB. Protein Sci 19:1258–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirstein J, Dougan DA, Gerth U, Hecker M, Turgay K (2007) The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO J 26:2061–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kortmann J, Narberhaus F (2012) Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol 10:255–265

    Article  CAS  PubMed  Google Scholar 

  • Kouse AB, Righetti F, Kortmann J, Narberhaus F, Murphy ER (2013) RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLoS One 8:e63781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krüger E, Msadek T, Hecker M (1996) Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol Microbiol 20:713–724

    Article  PubMed  Google Scholar 

  • Krüger E, Msadek T, Ohlmeier S, Hecker M (1997) The Bacillus subtilis clpC operon encodes DNA repair and competence proteins. Microbiology 143:1309–1316

    Article  PubMed  Google Scholar 

  • Lesley SA, Thompson NE, Burgess RR (2003) Studies of the role of the Escherichia coli heat shock regulatory protein sigma factor 32 by the use of monoclonal antibodies. J Biol Chem 262:5404–5407

    Google Scholar 

  • Lim B, Miyazaki R, Neher S, Siegele DA, Ito K, Walter P, Akiyama Y, Yura T, Gross CA (2013) Heat shock transcription factor sigma(32) co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLoS Biol 11:e1001735

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima S, Guo MS, Chaba R, Gross CA, Sauer RT (2013) Dual molecular signals mediate the bacterial response to outer-membrane stress. Science 340:837–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Garcia P, Forterre P (2000) DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. BioEssays 22:738–746

    Article  CAS  PubMed  Google Scholar 

  • Manganelli R, Dubnau E, Tyagi S, Kramer FR, Smith I (1999) Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol 31:715–724

    Article  CAS  PubMed  Google Scholar 

  • Maurelli AT, Blackmon B, Curtiss R III (1984) Temperature-dependent expression of virulence genes in Shigella species. Infect Immun 43:195–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mecsas J, Rouviere PE, Erickson JW, Donohue TJ, Gross CA (1993) The activity of σE, an Escherichia coli heat-inducible σ-factor, is modulated by expression of outer membrane proteins. Genes Dev 7:2618–2628

    Article  CAS  PubMed  Google Scholar 

  • Meyer AS, Baker TA (2011) Proteolysis in the Escherichia coli heat shock response: a player at many levels. Curr Opin Microbiol 14:194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missiakas D, Mayer MP, Lemaire M, Georgopoulos C, Raina S (1997) Modulation of the Escherichia coli σE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 24:355–371

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki R, Yura T, Suzuki T, Dohmae N, Mori H, Akiyama Y (2016) A novel SRP recognition sequence in the homeostatic control region of heat shock transcription factor σ32. Sci Rep 6:24147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno T (1987) Random cloning of bent DNA segments from Escherichia coli chromosome and primary characterization of their structures. Nucleic Acids Res 15:6827–6841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579–4590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita M, Kanemori M, Yanagi H, Yura T (1999a) Heat-induced synthesis of σ32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J Bacteriol 181:401–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999b) Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes Dev 13:655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mourino M, Munoa F, Balsalobre C, Diaz P, Madrid C, Juarez A (1994) Environmental regulation of alpha-haemolysin expression in Escherichia coli. Microb Pathog 16:249–259

    Article  CAS  PubMed  Google Scholar 

  • Nagai H, Yuzawa H, Yura T (1991) Interplay of two cis-acting mRNA regions in translational control of σ32 synthesis during the heat shock response of Escherichia coli. Proc Natl Acad Sci U S A 88:10515–10519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakahigashi K, Yanagi H, Yura T (1995) Isolation and sequence analysis of rpoH genes encoding σ32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res 23:4383–4390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narberhaus F, Käser R, Nocker A, Hennecke H (1998) A novel DNA element that controls bacterial heat shock gene expression. Mol Microbiol 28:315–323

    Article  CAS  PubMed  Google Scholar 

  • Nickerson CA, Achberger EC (1995) Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters. J Bacteriol 177:5756–5761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F (2001) A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29:4800–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochman H, Soncini FC, Solomon F, Groisman EA (1996) Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A 93:7800–7804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono S, Goldberg MD, Olsson T, Esposito D, Hinton JC, Ladbury JE (2005) H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem J 391:203–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park ST, Kang CM, Husson RN (2008) Regulation of the SigH stress response regulon by an essential protein kinase in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 105:13105–13110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra M, Roy SS, Dasgupta R, Basu T (2015) GroEL to DnaK chaperone network behind the stability modulation of sigma at physiological temperature in Escherichia coli. FEBS Lett 589(24 Pt B):4047–4052

    Article  CAS  PubMed  Google Scholar 

  • Prosseda G, Falconi M, Giangrossi M, Gualerzi CO, Micheli G, Colonna B (2004) The virF promoter in Shigella: more than just a curved DNA stretch. Mol Microbiol 51:523–537

    Article  CAS  PubMed  Google Scholar 

  • Pruss GJ, Drlica K (1989) DNA supercoiling and prokaryotic transcription. Cell 56:521–523

    Article  CAS  PubMed  Google Scholar 

  • Rajaram H, Chaurasia AK, Apte SK (2014) Cyanobacterial heat-shock response: role and regulation of molecular chaperones. Microbiology 160:647–658

    Article  CAS  PubMed  Google Scholar 

  • Raman S, Song T, Puyang X, Bardarov S, Jacobs WR Jr, Husson RN (2001) The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J Bacteriol 183:6119–6125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reischl S, Wiegert T, Schumann W (2002) Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function. J Biol Chem 277:32659–32667

    Article  CAS  PubMed  Google Scholar 

  • Rinnenthal J, Klinkert B, Narberhaus F, Schwalbe H (2010) Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res 38:3834–3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasakawa C, Kamata K, Sakai T, Makino S, Yamada M, Okada N, Yoshikawa M (1988) Virulence-associated genetic regions comprising 31 kilobases of the 230-kilobase plasmid in Shigella flexneri 2a. J Bacteriol 170:2480–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Schiesswohl M, Völker U, Hecker M, Schumann W (1992) Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis. J Bacteriol 174:3993–3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumann W (2012) Thermosensor systems in eubacteria. Adv Exp Med Biol 739:1–16

    Article  CAS  PubMed  Google Scholar 

  • Shea JE, Hensel M, Gleeson C, Holden DW (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93:2593–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Anil KV, Das AK, Bansal R, Sarkar D (2014) A transcriptional co-repressor regulatory circuit controlling the heat-shock response of Mycobacterium tuberculosis. Mol Microbiol 94:450–465

    Article  CAS  PubMed  Google Scholar 

  • Song T, Dove SL, Lee KH, Husson RN (2003) RshA, an anti-sigma factor that regulates the activity of the mycobacterial stress response sigma factor SigH. Mol Microbiol 50:949–959

    Article  CAS  PubMed  Google Scholar 

  • Storz G, Hengge-Aronis R (2000) Bacterial stress responses. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Tomoyasu T, Gamer J, Bukau B, Kanemori M, Mori H, Rutman AJ, Oppenheim AB, Yura T, Yamanaka K, Niki H, Hiraga S, Ogura T (1995) Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32. EMBO J 14:2551–2560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomoyasu T, Ogura T, Tatsuta T, Bukau B (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 30:567–582

    Article  CAS  PubMed  Google Scholar 

  • Waldminghaus T, Heidrich N, Brantl S, Narberhaus F (2007) FourU: a novel type of RNA thermometer in Salmonella. Mol Microbiol 65:413–424

    Article  CAS  PubMed  Google Scholar 

  • Walsh NP, Alba BM, Bose B, Gross CA, Sauer RT (2003) OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113:61–71

    Article  CAS  PubMed  Google Scholar 

  • Weber GG, Kortmann J, Narberhaus F, Klose KE (2014) RNA thermometer controls temperature-dependent virulence factor expression in Vibrio cholerae. Proc Natl Acad Sci U S A 111:14241–14246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White-Ziegler CA, Blyn LB, Braaten BA, Low DA (1990) Identification of an Escherichia coli genetic locus involved in thermoregulation of the pap operon. J Bacteriol 172:1775–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Niu Y, Liang K, Wang J, Li X, Yang Y (2015) Heat shock transcription factor σ32 is targeted for degradation via an ubiquitin-like protein ThiS in Escherichia coli. Biochem Biophys Res Commun 459:240–245

    Article  CAS  PubMed  Google Scholar 

  • Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158

    Article  CAS  PubMed  Google Scholar 

  • Zuber U, Schumann W (1994) CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176:1359–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Schumann, W. (2017). Regulation of the Heat Shock Response in Bacteria. In: Kumar, C., Mande, S. (eds) Prokaryotic Chaperonins. Heat Shock Proteins, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-4651-3_2

Download citation

Publish with us

Policies and ethics