Skip to main content

Anthrax Bacterium: Its Etiology and Possible Therapeutics Against Cancer

  • Chapter
  • First Online:
Advances in Animal Biotechnology and its Applications
  • 1107 Accesses

Abstract

Anthrax is an ancient disease caused by Bacillus anthracis and leads to animal and human deaths. It has imparted very important role in history of science by becoming the first bacterium to be observed under microscope, isolated in pure culture and used in attenuated vaccine and became the base of Koch’s famous postulates about germs. The bacterium contains two megaplasmids pXO1 (181 kb), encoding for three secretary toxins named as protective antigen (PA), lethal factor (LF) and edema factor (EF), and pXO2 (96 kb) encoding for anti-phagocytic capsule. The expression of genes is under the control of several cis and trans locating genetic elements and environmental factors. Present chapter provides the detailed insight to the structure and function of different toxins produced by B. anthracis bacterium including their mode of action. The lethal toxin enzymatically cleaves mitogen-activated protein kinases (MEKs), and edema toxin raises the amount of intracellular cAMP. Both toxins have important role in cellular signalling and cell survival pathways, and the same property may be exploited to cure several diseases related to propagation of cells like cancer. How different components of bacterium like toxins and receptors can be manoeuvred to find therapeutics value against cancer is being described. In summary, anthrax is a bacterium which is a life-threatening organism but tactically can be turned into life saviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abergel RJ, Wilson MK, Arceneaux JE et al (2006) Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci U S A 103:18499–18503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abi-Habib RJ, Urieto JO, Liu S, Leppla SH et al (2005) BRAF status and mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 activity indicate sensitivity of melanoma cells to anthrax lethal toxin. Mol Cancer Ther 4:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Abrami L, Liu S, Cosson P et al (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abrami L, Lindsay M, Parton RG et al (2004) Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J Cell Biol 166:645–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abrami L, Leppla SH, Van der Goot FG (2006) Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. J Cell Biol 172(2):309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abrami L, Bischofberger M, Kunz B, Groux R, van der Goot FG (2010) Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog 6:e1000792. https://doi.org/10.1371/journal.ppat.1000792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abshire TG, Brown JE, Ezzell JW (2005) Production and validation of the use of gamma phage for identification of Bacillus anthracis. J Clin Microbiol 43:4780–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allured VS, Case LM, Leppla SH, McKay DB (1985) Crystallization of the protective antigen protein of Bacillus anthracis. J Biol Chem 260:5012–5013

    PubMed  CAS  Google Scholar 

  • Arora N, Klimpel KR, Singh Y, Leppla SH (1992) Fusions of anthrax toxin lethal factor to the adp-ribosylation domain of pseudomonas exotoxin A are potent cytotoxins which are translocated to the cytosol of mammalian cells. J Biol Chem 267(22):15542–15548

    PubMed  CAS  Google Scholar 

  • Bachran C, Gupta PK, Bachran S, Leysath CE et al (2014) Reductive methylation and mutation of an anthrax toxin fusion protein modulates its stability and cytotoxicity. Sci Rep 4:4754. https://doi.org/10.1038/srep04754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell SE, Mavila A, Salazar R, Bayless KJ et al (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signalling. J Cell Sci 114:2755–2773

    PubMed  CAS  Google Scholar 

  • Bhatnagar R, Batra S (2001) Anthrax toxins. Crit Rev Microb 27:167–200

    Article  CAS  Google Scholar 

  • Boll W, Ehrlich M, Collier RJ, Kirchhausen T (2004) Effects of dynamin inactivation on pathways of anthrax toxin uptake. Eur J Cell Biol 83:281–288

    Article  CAS  PubMed  Google Scholar 

  • Bradley KA, Young JA (2003) Anthrax toxin receptor proteins. Biochem Pharmacol 65:309–314

    Article  CAS  PubMed  Google Scholar 

  • Bragg TS, Robertson DL (1989) Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis. Gene 81:45–54

    Article  CAS  PubMed  Google Scholar 

  • Brown ER, Cherry WB (1955) Specific identification of Bacillus anthracis by means of a variant bacteriophage. J Infect Dis 96:34–39

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary A, Hilton MB, Seaman S, Haines DC et al (2012) TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 21:212–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coker PR, Smith KL, Fellows PF et al (2003) Bacillus anthracis virulence in guinea pigs vaccinated with anthrax vaccine adsorbed is linked to plasmid quantities and clonality. J Clin Microbiol 41:1212–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cryan LM, Roger MS (2011) Targeting the anthrax receptors, TEM-8 and CMG-2, for anti-angiogenic therapy. Front Biosci 16:1574–1588

    Article  CAS  PubMed Central  Google Scholar 

  • Cullen M, Seaman S, Chaudhary A, Yang MY et al (2009) Host-derived tumor endothelial marker 8 promotes the growth of melanoma. Cancer Res 69(15):6021–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  Google Scholar 

  • Deng WG, Jayachandran G, Wu G, Xu K et al (2007) Tumor-specific activation of human telomerase reverses transcriptase promoter activity by activating enhancer-binding protein-2beta in human lung cancer cells. J Biol Chem 282(36):26460–26470

    Article  CAS  PubMed  Google Scholar 

  • Dixon TC, Meselson M, Guillemin J, Hanna PC (1999) Anthrax. N Engl J Med 341:815–826

    Article  CAS  PubMed  Google Scholar 

  • Dixon TC, Fadl AA, Koehler TM et al (2000) Early Bacillus anthracis–macrophage interactions: intracellular survival and escape. Cell Microbiol 2:453–463

    Article  CAS  PubMed  Google Scholar 

  • Driks A (2002) Overview: development in bacteria: spore formation in Bacillus subtilis. Cell Mol Life Sci 59:389–391

    Article  CAS  PubMed  Google Scholar 

  • Duan HF, Hu XW, Chen JL, Gao LH et al (2007) Antitumor activities of TEM8-Fc: an engineered antibody-like molecule targeting tumor endothelial marker 8. J Natl Cancer Inst 99:1551–1555

    Article  CAS  PubMed  Google Scholar 

  • Duesbery NS, Woude GFV (1999) Anthrax toxins. Cell Mol Life Sci 55:1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Duesbery NS, Webb CP, Leppla SH, Gordon VM et al (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280:734–737

    Article  CAS  PubMed  Google Scholar 

  • Elliott JL, Jeremy M, Collier RJ (2000) A quantitative study of the interactions of Bacillus anthracis edema factor and lethal factor with activated protective antigen. Biochemistry 39(22):6706–6713

    Article  CAS  PubMed  Google Scholar 

  • Elwell CA, Dreyfus LA (2000) DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol Microbiol 37:952–963

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Toumelin I, Sirard JC, Duflot E et al (1995) Characterisation of the Bacillus anthracis S-layer: cloning and sequencing of the structural gene. J Bacteriol 177:614–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink SL, Bergsbaken T, Cookson BT (2008) Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc Natl Acad Sci U S A 105(11):4312–4317

    Article  PubMed  PubMed Central  Google Scholar 

  • Fouet A, Mesnage S, Tosi-Couture E, Gounon P, Mock M (1999) Bacillus anthracis surface: capsule and S-layer. J Appl Microbiol 87:251–255

    Article  CAS  PubMed  Google Scholar 

  • Gloria B, Federica S, Philippe G, Terence M et al (2005) ATR/TEM8 is highly expressed in epithelial cells lining Bacillus anthracis’ three sites of entry: implications for the pathogenesis of anthrax infection. Am J Physiol 288:1402–1410

    Article  CAS  Google Scholar 

  • Gordon VM, Klimpel KR, Arora N et al (1995) Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun 63(1):82–87

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guignot J, Mock M, Fouet A (1997) AtxA activates the transcription of genes harboured by both Bacillus anthracis virulence plasmids. FEMS Microbiol Lett 147:203–207

    Article  CAS  PubMed  Google Scholar 

  • Hadjifrangiskou M, Chen Y, Koehler TM (2007) The alternative sigma factor sigma H is required for toxin gene expression by Bacillus anthracis. J Bacteriol 189:1874–1883

    Article  CAS  PubMed  Google Scholar 

  • Hoover DL, Friedlander AM, Rogers LC et al (1994) Anthrax edema toxin differentially regulates lipopolysaccharide-induced monocyte production of tumor necrosis factor alpha and interleukin-6 by increasing intracellular cyclic AMP. Infect Immun 62:4432–4439

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hotchkiss KA, Basile CM, Spring SC, Bonuccelli G et al (2005) TEM8 expression stimulates endothelial cell adhesion and migration by regulating cell–matrix interactions on collagen. Exp Cell Res 305:133–144

    Article  CAS  PubMed  Google Scholar 

  • Jayachandran R (2001) Anthrax: biology of Bacillus anthracis. Science 294:1810–1812

    Article  Google Scholar 

  • Jeong SY, Martchenko M, Cohen SN (2013) Calpain-dependent cytoskeletal rearrangement exploited for anthrax toxin endocytosis. Proc Natl Acad Sci U S A 110(42):E4007–E4015. https://doi.org/10.1073/pnas.1316852110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jinadasa RN, Bloom SE, Weiss RS, Duhamel GE (2011) Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiology 157:1851–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandia R, Pattnaik B, Rajukumar K, Pateriya AK et al (2013) Evaluation of a protective antigen gene based SYBR green I real time PCR for detection of Bacillus anthracis in field samples. Indian J Anim Sci 83:118–123

    Google Scholar 

  • Khandia R, Bhatia S, Victoria C, Sood R, Dhama K (2014) Anthrax toxin receptors, functions and their possible use in therapeutics: a review. Asian J Anim Vet Adv 9(10):599–609

    Article  CAS  Google Scholar 

  • Khandia R, Pattnaik B, Rajukumar K, Pateriya A et al (2017) Anti-proliferative role of recombinant lethal toxin of Bacillus anthracis on primary mammary ductal carcinoma cells revealing its therapeutic potential. Oncotarget 8(22):35835–35847

    Article  PubMed  PubMed Central  Google Scholar 

  • Klimpel KR, Arora N, Leppla SH (1994) Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol Microbiol 13(6):1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Kochi SK, Schaiva G, Mock M, Montecucco C (1994) Zn content of Bacillus anthracis lethal factor. FEMS Microbiol Lett 124:343–348

    Article  CAS  PubMed  Google Scholar 

  • Koo HM, VanBrocklin M, McWilliams MJ et al (2002) Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc Natl Acad Sci U S A 99(5):3052–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labruyere E, Mock M, Ladant D, Michelson S et al (1990) Characterization of ATP and calmodulin-binding properties of a truncated form of Bacillus anthracis adenylate cyclase. Biochemistry 29:4922–4928

    Article  CAS  PubMed  Google Scholar 

  • Lacy DB, Mourez M, Fouassier A, Collier RJ (2002) Mapping the anthrax protective antigen binding site on the lethal and edema factors. J Biol Chem 277(4):3006–3010

    Article  CAS  PubMed  Google Scholar 

  • Lacy DB, Wigelsworth DJ, Scobie HM, Young JA, Collie RJ (2004) Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: an anthrax toxin receptor. Proc Natl Acad Sci U S A 101:6367–6372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalitha MK, Thomas MK (1997) Penicillin resistance in Bacillus anthracis. Lancet 349:1522–1532

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Janes BK, Passalacqua KD et al (2007) Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J Bacteriol 189:1698–1710

    Article  CAS  PubMed  Google Scholar 

  • Little SF, Ivins BE (1999) Molecular pathogenesis of Bacillus anthracis infection. Microbes Infect 1(2):131–139

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Netzel AS, Birkedal HH, Leppla SH (2000) Tumor cell-selective cytotoxicity of matrix metalloproteinase-activated anthrax toxin. Cancer Res 60(21):6061–6067

    PubMed  CAS  Google Scholar 

  • Liu S, Bugge TH, Leppla SH (2001) Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J Biol Chem 276(21):17976–17984

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Redeye V, Kuremsky JG, Kuhnen M et al (2005) Intermolecular complementation achieves high-specificity tumor targeting by anthrax toxin. Nat Biotechnol 23(6):725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Wang H, Currie BM, Molinolo A et al (2008) Matrix metalloproteinase-activated anthrax lethal toxin demonstrates high potency in targeting tumor vasculature. J Biol Chem 283(1):529–540

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Crown D, Miller RS, Moayeri M et al (2009) Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc Natl Acad Sci U S A 106:12424–12429

    Article  PubMed  PubMed Central  Google Scholar 

  • Merka V, Patocka J (2002) Anthrax: an important agent of biological terrorism. Nederl Milit Geneesk 55:142–145

    Google Scholar 

  • Milne JC, Furlong D, Hanna PC et al (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 269:20607–20612

    PubMed  CAS  Google Scholar 

  • Mosser EM, Rest RF (2006) The Bacillus anthracis cholesterol-dependent cytolysin, anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol 6:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573

    Article  CAS  PubMed  Google Scholar 

  • Nanda A, Carson-Walter EB, Seaman S, Barber TD et al (2004) TEM8 interacts with the cleaved C5 domain of collagen alpha 3(VI). Cancer Res 64(3):817–820

    Article  CAS  PubMed  Google Scholar 

  • Pannifer AD, Wong TY, Schwarzenbacher R, Renatus M et al (2001) Crystal structure of the anthrax lethal factor. Nature 414:229–233

    Article  CAS  PubMed  Google Scholar 

  • Park JM, Greten FR, Li ZW, Karin M (2002) Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297:2048–2051

    Article  CAS  PubMed  Google Scholar 

  • Park JM, Greten FR, Wong A, Westrick RJ et al (2005) Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis –CREB and NF-κB as key regulators. Immunity 23(3):19–329

    Article  CAS  Google Scholar 

  • Parry JM, Turnbull PCB, Gibson JR (1983) A color atlas of Bacillus species. Wolfe Medical, London, p 272

    Google Scholar 

  • Pasteur L (1881) De l'attenuation des virus et de leur retour a la virulence. C R Acad Sci Bulg 92:429–435

    Google Scholar 

  • Pellizzari R, Recchi C, Napolitani G, Mock M, Montecucco C (1999) Anthrax lethal factor cleaves the N-terminus of MAPKKS and induces tyrosine/threonine phosphorylation of MAPKS in cultured macrophages. J Appl Microbiol 87:288

    Article  PubMed  Google Scholar 

  • Petosa C, Liddington RC (1996) The anthrax toxin. In: Parker MW (ed) Protein toxin structure. R.G. Landes Company Austin, Texas, pp 97–121

    Chapter  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR et al (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:8833–8838

    Article  Google Scholar 

  • Phillips DD, Fattah RJ, Crown D et al (2013) Engineering anthrax toxin variants that exclusively form octamers and their application to targeting tumors. J Biol Chem 288:9058–9065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn CP, Chaudhary VK, Leppla SH (1991) The carboxyl-terminal end of protective antigen is required for receptor binding and anthrax toxin activity. J Biol Chem 266:15493–15497

    PubMed  Google Scholar 

  • Rayment I (1997) Reductive alkylation of lysine residues to alter crystallization properties of proteins. Methods Enzymol 276:171–179

    Article  CAS  PubMed  Google Scholar 

  • Read TD, Peterson SN, Tourasse N, Baillie LW et al (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86

    Article  CAS  PubMed  Google Scholar 

  • Reeves CV, Wang X, Charles-Horvath PC, Vink JY et al (2012) Anthrax toxin receptor 2 functions in ECM homeostasis of the murine reproductive tract and promotes MMP activity. PLoS One 7:e34862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reig N, Jiang A, Couture R et al (2008) Maturation modulates caspase-1-independent responses of dendritic cells to anthrax lethal toxin. Cell Microbiol 10:1190–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Z, Yang Z, Wang Y, Wang H et al (2009) DNA vaccine against tumor endothelial marker 8 inhibits tumor angiogenesis and growth. J Immunother 32(5):486–491

    Article  CAS  PubMed  Google Scholar 

  • Scobie HM, Rainey GJ, Bradley KA, Young JA (2003) Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci U S A 100:5170–5174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh Y, Klimpel KR, Quinn CP et al (1991) The carboxyl-terminal end of protective antigen is required for receptor binding and anthrax toxin activity. J Biol Chem 266:15493–15497

    PubMed  CAS  Google Scholar 

  • Singh Y, Klimpel KR, Goel S, Swain PK, Leppla SH (1999) Oligomerization of anthrax toxin protective antigen and binding of lethal factor during endocytic uptake into mammalian cells. Infect Immun 67:1853–1859

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sneath PHA (1986) Endospore-forming gram-positive rods and cocci. Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, p 1131

    Google Scholar 

  • Stepanov AV, Marinin LI, Pomerantsev AP, Staritsin NA (1996) Development of novel vaccines against anthrax in man. J Biotechnol 44:155–160

    Article  CAS  PubMed  Google Scholar 

  • Turnbull PCB (1996) Bacillus. In: Baron S (ed) Medical Microbiology, 4th edn. The University of Texas Medical Branch at Galveston, Galveston, pp 233–246

    Google Scholar 

  • Turnbull PC (1999) Definitive identification of Bacillus anthracis—review. J Appl Microbiol 87:237–240

    Article  CAS  PubMed  Google Scholar 

  • Uchida I, Hashimoto K, Terakado N (1986) Virulence and immunogenicity in experimental animals of Bacillus anthracis strains harbouring or lacking 110 MDa and 60 MDa plasmids. J Gen Microbiol 132:557–559

    PubMed  CAS  Google Scholar 

  • Vale AD, Cabanes D, Sousa S (2016) Bacterial toxins as pathogen weapons against phagocytes. Front Microbiol 7:42

    PubMed  PubMed Central  Google Scholar 

  • Varshavsky A (2011) The N-end rule pathway and regulation by proteolysis. Protein Sci 20(8):1298–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale G, Pellizzari R, Recchi C, Napolitani G et al (1998) Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem Biophys Res Commun 248:706–711

    Article  CAS  PubMed  Google Scholar 

  • Vitale G, Pellizzari R, Recchi C, Napolitani G et al (1999) Anthrax lethal factor cleaves the N-terminus of MAPKKS and induces tyrosine/threonine phosphorylation of MAPKS in cultured macrophages. J Appl Microbiol 248(3):706–711

    Google Scholar 

  • Wei W, Lu Q, Chaudry GJ et al (2006) The LDL receptor-related protein LRP6 mediates internalization and lethality of anthrax toxin. Cell 124(6):1141–1154

    Article  CAS  PubMed  Google Scholar 

  • Wein AN, Peters DE, Valivullah Z, Hoover BJ et al (2015) An anthrax toxin variant with an improved activity in tumor targeting. Sci Rep 5:16267. https://doi.org/10.1038/srep16267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welkos SL, Lowe JR, Eden-Mccutchan F, Vodkin M et al (1988) Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis. Gene 69:287–300

    Article  CAS  PubMed  Google Scholar 

  • Werner E, Kowalczyk AP, Faundez V (2006) Anthrax toxin receptor 1/tumor endothelium marker 8 mediates cell spreading by coupling extracellular ligands to the actin cytoskeleton. J Biol Chem 281:23227–23236

    Article  CAS  PubMed  Google Scholar 

  • Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13(10):3369–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigelsworth DJ, Krantz BA, Christensen KA et al (2004) Binding stoichiometry and kinetics of the interaction of a human anthrax toxin receptor, CMG2, with protective antigen. J Biol Chem 279:23349–23356

    Article  CAS  PubMed  Google Scholar 

  • Yang MY, Chaudhary A, Seaman S et al (2010) The cell surface structure of tumor endothelial marker 8 (TEM8) is regulated by the actin cytoskeleton. Biochem Biophys Acta 1813(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Zawadzka AM, Abergel RJ, Nichiporuk R et al (2009) Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin. Biochemistry 48:3645–3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Zhang G, Li J, Chen PR (2014) Monitoring endocytic trafficking of anthrax lethal factor by precise and quantitative protein labelling. Angew Chem Int Ed Eng 53:6449–6453

    Article  CAS  Google Scholar 

  • Zhuo W, Tao G, Zhang L, Chen Z (2013) Vector-mediated selective expression of lethal factor, a toxic element of Bacillus Anthracis, damages A549 cells via inhibition of MAPK and AKT pathways. Int J Med Sci 10(3):292–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwartouw HT, Smith H (1956) Polyglutamic acid from Bacillus anthracis grown in vivo: structure and aggressin activity. Biochem J 63:437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khandia, R., Munjal, A. (2018). Anthrax Bacterium: Its Etiology and Possible Therapeutics Against Cancer. In: Gahlawat, S., Duhan, J., Salar, R., Siwach, P., Kumar, S., Kaur, P. (eds) Advances in Animal Biotechnology and its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4702-2_13

Download citation

Publish with us

Policies and ethics