Skip to main content

Abstract

The mechano-electrospinning (MES) technique can be used to print solid/liquid straight nanofibers onto a large-area substrate, in a direct, continuous, and controllable manner. It is a high-efficiency and cost-effective solution-processable technique to satisfy increasing demands of large-area micro/nano-manufacturing. It is ground-breaking to direct-write sub-100 nm fibers on a rigid/flexible substrate using organic materials. A comprehensive review is presented on the research and developments related to the EHD direct-writing technique. Many developments have been presented to improve the controllability of the electrospun fibers to form high-resolution patterns and devices. EHD direct-writing is characterized by its non-contact, additive and reproducible processing, high resolution, and compatibility with organic materials. It combines dip-pen, inkjet, and electrospinning by providing the feasibility of controllable electrospinning for sub-100 nm nanofabrication, and overcomes the drawbacks of conventional electron-beam lithography, which is relatively slow, complicated and expensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Y, Fu ZY, Su BL (2012) Hierarchically structured porous materials for energy conversion and storage. Adv Func Mater 22(22):4634–4667

    Article  Google Scholar 

  2. Yang HF, Lightner CR, Dong L (2012) Light-emitting coaxial nanofibers. Acs Nano 6(1):622–628

    Article  Google Scholar 

  3. Gumennik A, Stolyarov AM, Schell BR, Hou C, Lestoquoy G, Sorin F, McDaniel W, Rose A, Joannopoulos JD, Fink Y (2012) All-in-fiber chemical sensing. Adv Mater 24(45):6005

    Google Scholar 

  4. Huang YA, Bu NB, Duan YQ, Pan YQ, Liu HM, Yin ZP, Xiong YL (2013) Electrohydrodynamic direct-writing. Nanoscale 5(24):12007–12017

    Article  Google Scholar 

  5. Sun DH, Chang C, Li S, Lin LW (2006) Near-field electrospinning. Nano Lett 6(4):839–842

    Article  Google Scholar 

  6. Chang C, Limkrailassiri K, Lin LW (2008) Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl Phys Lett 93(12)

    Google Scholar 

  7. Wang X, Zheng GF, Xu L, Cheng W, Xu BL, Huang YF, Sun DH (2012) Fabrication of nanochannels via near-field electrospinning. Appl Phys Mater 108(4):825–828

    Article  Google Scholar 

  8. Min SY, Kim TS, Kim BJ, Cho H, Noh YY, Yang H, Cho JH, Lee TW (2013) Large-scale organic nanowire lithography and electronics. Nat Commun 4

    Google Scholar 

  9. Agarwal S, Greiner A, Wendorff JH (2009) Electrospinning of manmade and biopolymer nanofibers-progress in techniques, materials, and applications. Adv Func Mater 19(18):2863–2879

    Article  Google Scholar 

  10. Yin ZP, Huang YA, Bu NB, Wang XM, Xiong YL (2010) Inkjet printing for flexible electronics: materials, processes and equipments. Chin Sci Bull 55(30):3383–3407

    Article  Google Scholar 

  11. Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13(10):3299–3305

    Article  Google Scholar 

  12. Chung S, Lee J, Song H, Kim S, Jeong J, Hong Y (2011) Inkjet-printed stretchable silver electrode on wave structured elastomeric substrate. Appl Phys Lett 98(15)

    Google Scholar 

  13. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499):2123–2126

    Article  Google Scholar 

  14. Yun YH, Lee BK, Choi JS, Kim S, Yoo B, Kim YS, Park K, Cho YW (2011) A glucose sensor fabricated by piezoelectric inkjet printing of conducting polymers and bienzymes. Anal Sci 27(4):375–379

    Article  Google Scholar 

  15. Jung HC, Cho SH, Joung JW, Oh YS (2007) Studies on inkjet-printed conducting lines for electronic devices. J Electron Mater 36(9):1211–1218

    Article  Google Scholar 

  16. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986):911–918

    Article  Google Scholar 

  17. Park JU, Hardy M, Kang SJ, Barton K, Adair K, Mukhopadhyay DK, Lee CY, Strano MS, Alleyne AG, Georgiadis JG, Ferreira PM, Rogers JA (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6(10):782–789

    Article  Google Scholar 

  18. de Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213

    Article  Google Scholar 

  19. Kim HY, Lee M, Park KJ, Kim S, Mahadevan L (2010) Nanopottery: coiling of electrospun polymer nanofibers. Nano Lett 10(6):2138–2140

    Article  Google Scholar 

  20. Han T, Reneker DH, Yarin AL (2007) Buckling of jets in electrospinning. Polymer 48(20):6064–6076

    Article  Google Scholar 

  21. Bu NB, Huang YA, Duan YQ, Yin ZP (2014) Process optimization of mechano-electrospinning by response surface methodology. J Nanosci Nanotechnol 14(5):3464–3472

    Article  Google Scholar 

  22. Li D, Xia YN (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170. https://doi.org/10.1002/adma.200400719

  23. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Edit 46(30):5670–5703

    Article  Google Scholar 

  24. Huang YA, Wang XM, Duan YQ, Bu NB, Yin ZP (2012) Controllable self-organization of colloid microarrays based on finite length effects of electrospun ribbons. Soft Matter 8(32):8302–8311

    Article  Google Scholar 

  25. Kameoka J, Orth R, Yang YN, Czaplewski D, Mathers R, Coates GW, Craighead HG (2003) A scanning tip electrospinning source for deposition of oriented nanofibres. Nanotechnology 14(10):1124–1129

    Article  Google Scholar 

  26. Bisht GS, Canton G, Mirsepassi A, Kuinsky L, Oh S, Dunn-Rankin D, Madou MJ (2011) Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Lett 11(4):1831–1837

    Article  Google Scholar 

  27. Chiu-Webster S, Lister JR (2006) The fall of a viscous thread onto a moving surface: a ‘fluid-mechanical sewing machine’. J Fluid Mech 569:89–111

    Article  MathSciNet  MATH  Google Scholar 

  28. Ribe NM, Lister JR, Chiu-Webster S (2006) Stability of a dragged viscous thread: onset of “stitching” in a fluid-mechanical “sewing machine”. Phys Fluids 18(12)

    Google Scholar 

  29. Xin Y, Reneker DH (2012) Hierarchical polystyrene patterns produced by electrospinning. Polymer 53(19):4254–4261

    Article  Google Scholar 

  30. Bu NB, Huang YA, Wang XM, Yin ZP (2012) Continuously tunable and oriented nanofiber direct-written by mechano-electrospinning. Mater Manuf Process 27(12):1318–1323

    Article  Google Scholar 

  31. Habibi M, Najafi J, Ribe NM (2011) Pattern formation in a thread falling onto a moving belt: an “elastic sewing machine”. Phys Rev E 84(1)

    Google Scholar 

  32. Theron SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45(6):2017–2030. https://doi.org/10.1016/j.polymer.2004.01.024

  33. Bu NB, Huang YA, Duan YQ, Ding YJ, Yin ZP (2015) Near-field behavior of electrified jet under moving substrate constrains. AIP Adv 5(1)

    Google Scholar 

  34. Bu NB, Huang YA, Deng HX, Yin ZP (2012) Tunable bead-on-string microstructures fabricated by mechano-electrospinning. J Phys D Appl Phys 45(40)

    Google Scholar 

  35. Naderi N, Agend F, Faridi-Majidi R, Sharifi-Sanjani N, Madani M (2008) Prediction of nanofiber diameter and optimization of electrospinning process via response surface methodology. J Nanosci Nanotechnol 8(5):2509–2515

    Article  Google Scholar 

  36. Park JY, Shim WG, Lee IH (2011) Modeling and optimization of electrospun polyvinylacetate (PVAc) nanofibers by response surface methodology (RSM). J Nanosci Nanotechnol 11(2):1359–1363

    Article  Google Scholar 

  37. Doustgani A, Vasheghani-Farahani E, Soleimani M, Hashemi-Najafabadi S (2013) Process optimization of electrospun polycaprolactone and nanohydroxyapatite composite nanofibers using response surface methodology. J Nanosci Nanotechnol 13(7):4708–4714

    Article  Google Scholar 

  38. Feng JJ (2002) The stretching of an electrified non-Newtonian jet: a model for electrospinning. Phys Fluids 14(11):3912–3926

    Article  MATH  Google Scholar 

  39. Carroll CP, Joo YL (2006) Electrospinning of viscoelastic Boger fluids: modeling and experiments. Phys Fluids 18(5)

    Google Scholar 

  40. Koombhongse S, Liu WX, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Pol Phys 39(21):2598–2606

    Article  Google Scholar 

  41. Montgomery D (2008) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  42. Choi HK, Park JU, Park OO, Ferreira PM, Georgiadis JG, Rogers JA (2008) Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl Phys Lett 92(12)

    Google Scholar 

  43. Hellmann C, Belardi J, Dersch R, Greiner A, Wendorff JH, Bahnmueller S (2009) High Precision Deposition Electrospinning of nanofibers and nanofiber nonwovens. Polymer 50(5):1197–1205. https://doi.org/10.1016/j.polymer.2009.01.029

  44. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89–R106. https://doi.org/10.1088/0957-4484/17/14/R01

    Article  Google Scholar 

  45. Li L, Zhong YW, Gong JL, Li JA, Chen CK, Zeng BR, Ma Z (2011) Constructing robust 3-dimensionally conformal micropatterns: vulcanization of honeycomb structured polymeric films. Soft Matter 7(2):546–552

    Article  Google Scholar 

  46. Syms RRA, Yeatman EM, Bright VM, Whitesides GM (2003) Surface tension-powered self-assembly of micro structures—the state-of-the-art. J Microelectromech Syst 12(4):387–417

    Article  Google Scholar 

  47. Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69(3):865–929

    Article  MATH  Google Scholar 

  48. Diez JA, Kondic L (2007) On the breakup of fluid films of finite and infinite extent. Phys Fluids 19(7)

    Google Scholar 

  49. Duineveld PC (2003) The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J Fluid Mech 477:175–200

    Article  MATH  Google Scholar 

  50. Brochard-Wyart F, Redon C (1992) Dynamics of liquid rim instabilities. Langmuir ACS J Surf Colloids 8(9):2324–2329

    Google Scholar 

  51. Kondic L, Diez JA, Rack PD, Guan YF, Fowlkes JD (2009) Nanoparticle assembly via the dewetting of patterned thin metal lines: understanding the instability mechanisms. Phys Rev E 79(2)

    Google Scholar 

  52. Tian XL, Bai H, Zheng YM, Jiang L (2011) Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting. Adv Func Mater 21(8):1398–1402

    Article  Google Scholar 

  53. Meinel AJ, Kubow KE, Klotzsch E, Garcia-Fuentes M, Smith ML, Vogel V, Merkle HP, Meinel L (2009) Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials 30(17):3058–3067

    Article  Google Scholar 

  54. Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohyd Polym 77(4):863–869

    Article  Google Scholar 

  55. Schiaffino S, Sonin AA (1997) Formation and stability of liquid and molten beads on a solid surface. J Fluid Mech 343:95–110

    Article  Google Scholar 

  56. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425

    Article  Google Scholar 

  57. Bellan LM, Craighead HG (2009) Nanomanufacturing using electrospinning. J Manuf Sci E-T Asme 131(3)

    Google Scholar 

  58. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87(9):4531–4547

    Article  Google Scholar 

  59. Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. II. Applications. Phys Fluids 13(8):2221–2236

    Article  MathSciNet  MATH  Google Scholar 

  60. Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592

    Article  Google Scholar 

  61. Eda G, Shivkumar S (2007) Bead-to-fiber transition in electrospun polystyrene. J Appl Polym Sci 106(1):475–487

    Article  Google Scholar 

  62. Liu Y, He JH, Yu JY, Zeng HM (2008) Controlling numbers and sizes of beads in electrospun nanofibers. Polym Int 57(4):632–636

    Article  Google Scholar 

  63. Zheng GF, Li WW, Wang X, Wu DZ, Sun DH, Lin LW (2010) Precision deposition of a nanofibre by near-field electrospinning. J Phys D Appl Phys 43(41)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Yin .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, Z., Huang, Y., Duan, Y., Zhang, H. (2018). Mechano-electrospinning (MES). In: Electrohydrodynamic Direct-Writing for Flexible Electronic Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-4759-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4759-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4758-9

  • Online ISBN: 978-981-10-4759-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics