Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 423 Accesses

Abstract

Reduction of the magnetic spacing in magnetic hard disk drives (HDDs) and tape drives is crucial to maintain proper recording and readback at extremely high areal densities. In HDDs, the media overcoat contributes to a significant part of the magnetic spacing, whereas in tape drives, abrasive wear of the head sensors leads to higher spacing. This necessitates the use of ultrathin overcoats which can maintain corrosion and tribological protection at the head-media interface, and ideally possess good thermal stability for heat-assisted magnetic recording (HAMR). In this thesis, such challenges are addressed through the development of novel carbon-based overcoats with thicknesses of ≤ 2 nm for HDD media and ≤ 20 nm for tape drive heads, using novel processes. The suitability of graphene as an overcoat for HDD media is also explored. The improved functional properties of these overcoats are subsequently explained in terms of their microstructure and interfacial bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.D. Daniel, C.D. Mee, M.H. Clark, Magnetic Recording: The First 100 Years, 1st edn. (Wiley-IEEE Press, New York, USA, 1998)

    Book  Google Scholar 

  2. IBM Archives. IBM 350 Disk Storage Unit [Online]. https://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html. Accessed 11 Aug 2015

  3. EMC Digital Universe Infobrief. The Digital Universe of Opportunities. International Data Corporation, Apr 2014

    Google Scholar 

  4. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828 (1989)

    Article  Google Scholar 

  5. M.N. Baibich, J.M. Broto, A. Fert, F.N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988)

    Article  Google Scholar 

  6. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868 (2004)

    Article  Google Scholar 

  7. S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.-H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862 (2004)

    Article  Google Scholar 

  8. C. Reig, C.-B. Maria-Dolores, D.R. Munoz, Magnetic field sensors based on giant magnetoresistance (GMR) technology: applications in electrical current sensing. Sensors 9, 7919 (2009)

    Article  Google Scholar 

  9. W.J. Gallagher, S.S.P. Parkin, Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-Mb MRAM demonstrator chip. IBM J. Res. Dev. 50, 5 (2006)

    Article  Google Scholar 

  10. Q.H. Zeng, D.B. Bogy, Stiffness and damping evaluation of air bearing sliders and new designs with high damping. J. Tribol. 121, 341 (1999)

    Article  Google Scholar 

  11. H. Kohira, V. Prabhakaran, F.E. Talke, Effect of air bearing design on wear of diamond-like carbon coated proximity recording sliders. Tribol. Int. 33, 315 (2000)

    Article  Google Scholar 

  12. B. Marchon, T. Pitchford, Y.-T. Hsia, S. Gangopadhyay, The head-disk interface roadmap to an areal density of 4 Tbit/in2. Adv. Tribol. 2013, 521086 (2013)

    Google Scholar 

  13. G.-G. Wang, X.-P. Kuang, H.-Y. Zhang, C. Zhu, J.-C. Han, H.-B. Zuo, H.-T. Ma, Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider. Mater. Chem. Phys. 131, 127 (2011)

    Article  Google Scholar 

  14. N. Yasui, H. Inaba, N. Ohtake, Influence of substrates on initial growth of diamond-like carbon films. Appl. Phys. Express 1, 035002 (2008)

    Article  Google Scholar 

  15. C.S. Bhatia, S. Anders, K. Bobb, R. Hsiao, I.G. Brown, D.B. Bogy, Ultra-Thin Overcoats for the Head/Disk Interface Tribology. J. Tribol. Trans. ASME 120, 795 (1998)

    Article  Google Scholar 

  16. H. Han, F. Ryan, M. McClure, Ultra-thin tetrahedral amorphous carbon film as slider overcoat for high areal density magnetic recording. Surf. Coat. Technol. 120–121, 579 (1999)

    Article  Google Scholar 

  17. H. Inaba, K. Furusawa, S. Hirano, S. Sasaki, S. Todoroki, M. Yamasaka, M. Endou, Tetrahedral amorphous carbon films by filtered cathodic vacuum-arc deposition for air-bearing-surface overcoat. Jpn. J. Appl. Phys. 42, 2824 (2003)

    Article  Google Scholar 

  18. C. Casiraghi, A.C. Ferrari, R. Ohr, D. Chu, J. Robertson, Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology. Diam. Relat. Mater. 13, 1416 (2004)

    Article  Google Scholar 

  19. C.S. Bhatia, C.-Y. Chen, W. Fong, D.B. Bogy, Tribochemistry of ZDOL decomposition on carbon overcoats in ultra-high vacuum (UHV), in MRS Online Proceedings Library, vol. 594 (1999)

    Google Scholar 

  20. C.S. Bhatia, W. Fong, C. Chao-Yuan, W. Jianjun, D.B. Bogy, S. Anders, T. Stammler, J. Stohr, Tribo-chemistry at the head/disk interface. IEEE Trans. Magn. 35, 910 (1999)

    Article  Google Scholar 

  21. P.H. Kasai, W.T. Tang, P. Wheeler, Degradation of perfluoropolyethers catalyzed by aluminum oxide. Appl. Surf. Sci. 51, 201 (1991)

    Article  Google Scholar 

  22. J. Robertson, Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383, 81 (2001)

    Article  Google Scholar 

  23. B.D. Strom, D.B. Bogy, R.G. Walmsley, J. Brandt, C.S. Bhatia, Gaseous wear products from perfluoropolyether lubricant films. Wear 168, 31 (1993)

    Article  Google Scholar 

  24. T.C. Arnoldussen, E.-M. Rossi, Materials for magnetic recording. Annu. Rev. Mater. Sci. 15, 379 (1985)

    Article  Google Scholar 

  25. T. Toyaguchi, T. Yamamoto, Material and tribological properties of a-C: H film by plasma CVD for a disk overcoat. IEEE Trans. Magn. 34, 1741 (1998)

    Article  Google Scholar 

  26. T. Yamamoto, H. Hyodo, Amorphous carbon overcoat for thin-film disk. Tribol. Int. 36, 483 (2003)

    Article  Google Scholar 

  27. S.S. Perry, C.M. Mate, R.L. White, G.A. Somorjai, Bonding and tribological properties of perfluorinated lubricants and hydrogenated amorphous carbon films. IEEE Trans. Magn. 32, 115 (1996)

    Article  Google Scholar 

  28. A.C. Ferrari, Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 180–181, 190 (2004)

    Article  Google Scholar 

  29. D.J. Li, M.U. Guruz, C.S. Bhatia, Y.-W. Chung, Ultrathin CNx overcoats for 1 Tb/in2 hard disk drive systems. Appl. Phys. Lett. 81, 1113 (2002)

    Article  Google Scholar 

  30. J. Robertson, Requirements of ultrathin carbon coatings for magnetic storage technology. Tribol. Int. 36, 405 (2003)

    Article  Google Scholar 

  31. A.G. Merzlikine, L. Li, P. Jones, Y.-T. Hsia, Lubricant layer formation during the dip-coating process: influence of adsorption and viscous flow mechanisms. Tribol. Lett. 18, 279 (2005)

    Article  Google Scholar 

  32. G.E. Totten, Handbook of Lubrication and Tribology: Volume 1 Application and Maintenance, vol. 1, 2nd edn. (CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, 2006)

    Google Scholar 

  33. P. Kasai, Z-dol and carbon overcoat: the bonding mechanism. Tribol. Lett. 26, 93 (2007)

    Article  Google Scholar 

  34. R.P. Ambekar, D.B. Bogy, C.S. Bhatia, Lubricant depletion and disk-to-head lubricant transfer at the head-disk interface in hard disk drives. J. Tribol. 131, 031901 (2009)

    Article  Google Scholar 

  35. X.-C. Guo, B. Knigge, B. Marchon, R.J. Waltman, M. Carter, J. Burns, Multidentate functionalized lubricant for ultralow head/disk spacing in a disk drive. J. Appl. Phys. 100, 044306 (2006)

    Article  Google Scholar 

  36. P.H. Kasai, T. Shimizu, Bonding of hard disk lubricants with OH-bearing end groups. Tribol. Lett. 46, 43 (2012)

    Article  Google Scholar 

  37. Q. Zhao, H.J. Kang, F.E. Talke, D.J. Perettie, T.A. Morgan, Tribological study of phosphazene-type additives in perfluoropolyether lubricant for hard disk applications. Lubr. Eng. 55, 16 (1999)

    Google Scholar 

  38. T. Shiramatsu, M. Kurita, K. Miyake, M. Suk, S. Ohki, H. Tanaka, S. Saegusa, Drive integration of active flying-height control slider with micro thermal actuator. IEEE Trans. Magn. 42, 2513 (2006)

    Article  Google Scholar 

  39. M. Suk, K. Miyake, M. Kurita, H. Tanaka, S. Saegusa, N. Robertson, Verification of thermally induced nanometer actuation of magnetic recording transducer to overcome mechanical and magnetic spacing challenges. IEEE Trans. Magn. 41, 4350 (2005)

    Article  Google Scholar 

  40. C.M. Mate, Q. Dai, R.N. Payne, B.E. Knigge, P. Baumgart, Will the numbers add up for sub-7-nm magnetic spacings? Future metrology issues for disk drive lubricants, overcoats, and topographies. IEEE Trans. Magn. 41, 626 (2005)

    Article  Google Scholar 

  41. J. Li, B. Liu, W. Hua, Y. Ma, Effects of intermolecular forces on deep sub-10 nm spaced sliders. IEEE Trans. Magn. 38, 2141 (2002)

    Article  Google Scholar 

  42. B.H. Thornton, D.B. Bogy, Head-disk interface dynamic instability due to intermolecular forces. IEEE Trans. Magn. 39, 2420 (2003)

    Article  Google Scholar 

  43. Q. Dai, F. Hendriks, B. Marchon, Modeling the washboard effect at the head/disk interface. J. Appl. Phys. 96, 696 (2004)

    Article  Google Scholar 

  44. D. Weller, A. Moser, Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423 (1999)

    Article  Google Scholar 

  45. M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, J. Ganping, Y.-T. Hsia, M.F. Erden, Heat assisted magnetic recording. Proc. IEEE 96, 1810 (2008)

    Article  Google Scholar 

  46. R.E. Rottmayer, S. Batra, D. Buechel, W.A. Challener, J. Hohlfeld, Y. Kubota, L. Li, L. Bin, C. Mihalcea, K. Mountfield, K. Pelhos, C. Peng, T. Rausch, M.A. Seigler, D. Weller, X. Yang, Heat-assisted magnetic recording. IEEE Trans. Magn. 42, 2417 (2006)

    Article  Google Scholar 

  47. H.J. Richter, A.Y. Dobin, O. Heinonen, K.Z. Gao, R.J.M.v.d. Veerdonk, R.T. Lynch, J. Xue, D. Weller, P. Asselin, M.F. Erden, R.M. Brockie, Recording on bit-patterned media at densities of 1 Tb/in2 and beyond. IEEE Trans. Magn. 42, 2255 (2006)

    Google Scholar 

  48. B.D. Terris, T. Thomson, G. Hu, Patterned media for future magnetic data storage. Microsyst. Technol. 13, 189 (2007)

    Article  Google Scholar 

  49. J.-G. Zhu, X. Zhu, Y. Tang, Microwave assisted magnetic recording. IEEE Trans. Magn. 44, 125 (2008)

    Article  Google Scholar 

  50. S. Greaves, Y. Kanai, H. Muraoka, Shingled recording for 2–3 Tbit/in2. IEEE Trans. Magn. 45, 3823 (2009)

    Article  Google Scholar 

  51. R. Wood, M. Willlams, A. Kavcic, J. Miles, The feasibility of magnetic recording at 10 terabits per square inch on conventional media. IEEE Trans. Magn. 45, 917 (2009)

    Article  Google Scholar 

  52. D. Reinsel, J. Rydning, Helium Taking HDDs to New Heights. International Data Corporation, White Paper, Nov. 2013

    Google Scholar 

  53. Advanced Storage Industry Consortium (ASTC) (2014) ASTC Technology Roadmap 2014 v8 [Online]. http://www.idema.org/?page_id=2269. Accessed 8 Jul 2015

  54. T.R. Albrecht, H. Arora, V. Ayanoor-Vitikkate, J.M. Beaujour, D. Bedau, D. Berman, A.L. Bogdanov, Y.A. Chapuis, J. Cushen, E.E. Dobisz, G. Doerk, G. He, M. Grobis, B. Gurney, W. Hanson, O. Hellwig, T. Hirano, P.-O. Jubert, D. Kercher, J. Lille, Z. Liu, C.M. Mate, Y. Obukhov, K.C. Patel, K. Rubin, R. Ruiz, M. Schabes, L. Wan, D. Weller, T.-W. Wu, E. Yang, Bit-patterned magnetic recording: theory, media fabrication, and recording performance. IEEE Trans. Magn. 51, 0800342 (2015)

    Article  Google Scholar 

  55. B. Marchon, K. Saito, B. Wilson, R. Wood, The limits of the wallace approximation for PMR recording at high areal density. IEEE Trans. Magn. 47, 3422 (2011)

    Article  Google Scholar 

  56. R.L. Wallace, The reproduction of magnetically recorded signals. Bell Syst. Technol. J. 30, 1145 (1951)

    Article  Google Scholar 

  57. R. Wood, The feasibility of magnetic recording at 1 terabit per square inch. IEEE Trans. Magn. 36, 36 (2000)

    Article  Google Scholar 

  58. C.M. Mate, B.K. Yen, D.C. Miller, M.F. Toney, M. Scarpulla, J.E. Frommer, New methodologies for measuring film thickness, coverage, and topography. IEEE Trans. Magn. 36, 110 (2000)

    Article  Google Scholar 

  59. B.K. Yen, R.L. White, R.J. Waltman, Q. Dai, D.C. Miller, A.J. Kellock, B. Marchon, P.H. Kasai, M.F. Toney, B.R. York, H. Deng, Q.F. Xiao, V. Raman, Microstructure and properties of ultrathin amorphous silicon nitride protective coating. J. Vac. Sci. Technol. A Vac. Surf. Films 21, 1895 (2003)

    Article  Google Scholar 

  60. V. Novotny, N. Staud, Correlation between environmental and electrochemical corrosion of thin-film magnetic recording media. J. Electrochem. Soc. 135, 2931 (1988)

    Article  Google Scholar 

  61. R.J. Waltman, J. Joseph, X.C. Guo, An AFM study of corrosion on rigid magnetic disks. Corros. Sci. 52, 1258 (2010)

    Article  Google Scholar 

  62. Information Storage Industry Consortium (INSIC) Information Storage Industry Consortium International Magnetic Tape Storage Roadmap 2012–2022, May 2012

    Google Scholar 

  63. M. Peters, The Technical and Operational Values of Barium Ferrite Tape Media. Enterprise Strategy Group, White Paper, Mar 2014

    Google Scholar 

  64. F.E. Talke, Tribology in magnetic recording technology. Ind. Lubr. Tribol. 52, 157 (2000)

    Article  Google Scholar 

  65. J. Wang, Dual Module RWW Tape Head Assembly. U.S. Patent US 6 690 542 B1, Fenruary 10, 2004

    Google Scholar 

  66. P. Poorman, The effect of tape overwrap angle and head radius on head/tape spacing and contact pressure in linear tape recording. Tribol. Int. 31, 449 (1998)

    Article  Google Scholar 

  67. J.B.C. Engelen, S. Furrer, H.E. Rothuizen, M.A. Lantz, Flat-profile tape-head friction and magnetic spacing. IEEE Trans. Magn. 50, 34 (2014)

    Article  Google Scholar 

  68. J.C. Engelen, M. Lantz, Asymmetrically wrapped flat-profile tape-head friction and spacing. Tribol. Lett. 59, 16 (2015)

    Article  Google Scholar 

  69. S.H. Muftu, H.F. Hinteregger, Contact Sheet Recording with a Self-acting Negative Air Bearing. U.S. Patent 6 118 626, Sept 12, 2000

    Google Scholar 

  70. R.J. Yeo, N. Dwivedi, L. Zhang, Z. Zhang, C.Y.H. Lim, S. Tripathy, C.S. Bhatia, Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: the role of enhanced interfacial bonding. J. Appl. Phys. 117, 045310 (2015)

    Article  Google Scholar 

  71. M.D. Bijker, J.J.J. Bastiaens, E.A. Draaisma, L.A.M. de Jong, E. Sourty, S.O. Saied, J.L. Sullivan, The development of a thin Cr2O3 wear protective coating for the advanced digital recording system. Tribol. Int. 36, 227 (2003)

    Article  Google Scholar 

  72. W.W. Scott, B. Bhushan, A.V. Lakshmikumaran, Ultrathin diamond-like carbon coatings used for reduction of pole tip recession in magnetic tape heads. J. Appl. Phys. 87, 6182 (2000)

    Article  Google Scholar 

  73. G.S.A.M. Theunissen, Wear coatings for magnetic thin film magnetic recording heads. Tribol. Int. 31, 519 (1998)

    Article  Google Scholar 

  74. B. Shi, J.L. Sullivan, M.A. Wild, S.O. Saied, Study of generation mechanism of three-body particles in linear tape recording. J. Tribol. 127, 155 (2005)

    Article  Google Scholar 

  75. J.L. Sullivan, M.A. Wild, M.S. Hempstock, The tribology of linear tape/head interfaces and its impact on signal performance. Tribol. Int. 36, 261 (2003)

    Article  Google Scholar 

  76. R.G. Biskeborn, W.S. Czarnecki, G.M. Decad, R.E. Fontana, I.E. Iben, J. Liang, C. Lo, L. Randall, P. Rice, A. Ting, T. Topuria, (Invited) Linear magnetic tape heads and contact recording. ECS Trans. 50, 19 (2013)

    Article  Google Scholar 

  77. J.A. Wickert, Analysis of self-excited longitudinal vibration of a moving tape. J. Sound Vib. 160, 455 (1993)

    Article  Google Scholar 

  78. G. Cherubini, R.D. Cideciyan, L. Dellmann, E. Eleftheriou, W. Haeberle, J. Jelitto, V. Kartik, M.A. Lantz, S. Olcer, A. Pantazi, H.E. Rothuizen, D. Berman, W. Imaino, P.-O. Jubert, G. McClelland, P.V. Koeppe, K. Tsuruta, T. Harasawa, Y. Murata, A. Musha, H. Noguchi, H. Ohtsu, O. Shimizu, R. Suzuki, 29.5-Gb/in2 recording areal density on barium ferrite tape. IEEE Trans. Magn. 47, 137 (2011)

    Article  Google Scholar 

  79. G.M. McClelland, D. Berman, P.-O. Jubert, W. Imaino, H. Noguchi, M. Asai, H. Takano, Effect of tape longitudinal dynamics on timing recovery and channel performance. IEEE Trans. Magn. 45, 3587 (2009)

    Article  Google Scholar 

  80. F. Spada, Contribution of Electrochemical Processes to Increased Head-media Spacing in Tape Drives. Univeristy of California, San Diego, Information Storage Industry Consortium TAPE Program Technical Review Report, Aug. 2013

    Google Scholar 

  81. J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R-Rep. 37, 129 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben Jueyuan Yeo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yeo, R.J. (2017). Introduction. In: Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4882-1_1

Download citation

Publish with us

Policies and ethics