Skip to main content

Design of Bifunctional Solid Catalysts for Conversion of Biomass-Derived Syngas into Biofuels

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Bifunctional Catalysts

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 8))

Abstract

Biomass resources can be thought of as an important source of syngas (CO + H2). The conversion of the biomass-derived syngas (bio-syngas) into biofuels represents a carbon dioxide-neutral route for the production of substitute of the petroleum-derived fuels. Fischer–Tropsch synthesis (FTS) is by far the most effective approach to convert syngas into biofuels. However, FTS produces unselectively normal aliphatic hydrocarbons with a broad distribution of carbon numbers. To selectively produce biofuels, bifunctional FTS catalysts composed of an FTS-active metal and an acidic zeolite can be used. Such catalysts are capable of narrowing down the distribution of the products into the liquid fuel fraction by means of hydrocracking, isomerization, and hydrogenolysis. At the beginning of this chapter, the pathways of biofuel production from lignocellulosic biomass and the processes involved in transforming lignocellulosic biomass to bio-syngas are introduced. Then, research activities on converting syngas into biofuels over bifunctional FTS catalysts are described and ideas for catalyst engineering, catalyst structure, and catalytic outcome are highlighted. This chapter describes some of the selectivity control strategies that can be adopted with bifunctional catalysts so that restrictions given by classical Anderson–Schulz–Flory distribution can be overcome and industrialization can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abelló S, Montané D. Exploring iron-based multifunctional catalysts for Fischer–Tropsch synthesis: a review. ChemSusChem. 2011;4(11):1538–56.

    Article  PubMed  CAS  Google Scholar 

  2. Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2008;99(13):5270–95.

    Article  CAS  PubMed  Google Scholar 

  3. Suurs RAA, Hekkert MP. Competition between first and second generation technologies: lessons from the formation of a biofuels innovation system in the Netherlands. Energy. 2009;34(5):669–79.

    Article  CAS  Google Scholar 

  4. Damartzis T, Zabaniotou A. Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review. Renew Sust Energ Rev. 2011;15(1):366–78.

    Article  CAS  Google Scholar 

  5. Sims REH, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Bioresour Technol. 2010;101(6):1570–80.

    Article  CAS  PubMed  Google Scholar 

  6. de Klerk A. Fischer–Tropsch refining: technology selection to match molecules. Green Chem. 2008;10(12):1249–79.

    Article  CAS  Google Scholar 

  7. Torres W, Pansare SS, Goodwin JG Jr. Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catal Rev. 2007;49(4):407–56.

    Article  CAS  Google Scholar 

  8. Claude V, Courson C, Köhler M, et al. Overview and essentials of biomass gasification technologies and their catalytic cleaning methods. Energy Fuel. 2016;30(11):8791–814.

    Article  CAS  Google Scholar 

  9. Zwart R, van Ree R. Bio-based Fischer–Tropsch diesel production technologies. In: Biofuels, Chichester, UK: John Wiley & Sons, Ltd; 2009; pp. 95–116.

    Google Scholar 

  10. McKendry P. Energy production from biomass (part 3): gasification technologies. Bioresour Technol. 2002;83(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  11. Boerrigter H, Calis H P, Slort D J, Bodenstaff H. Gas cleaning for integrated biomass gasification (BG) and Fischer–Tropsch (FT) systems; experimental demonstration of two BG-FT systems. The 2nd world conference and technology exhibition on biomass for energy, industry and climate protection. 2004; pp. 51–56.

    Google Scholar 

  12. Fischer F, Tropsch H. Über die synthese höherer glieder der aliphatischen reihe aus kohlenoxyd. Eur J Inorg Chem. 1923;56(11):2428–43.

    Google Scholar 

  13. Steynberg AP, Dry ME, Davis BH, Breman BB. Fischer–Tropsch reactors. Stud Surf Sci Catal. 2004;152:64–195.

    Google Scholar 

  14. Evans G, Smith C. Biomass to liquids technology. In: Comprehensive renewable energy. Oxford: Elsevier; 2012. p. 155–204.

    Chapter  Google Scholar 

  15. Hu J, Yu F, Lu Y. Application of Fischer–Tropsch synthesis in biomass to liquid conversion. Catalysts. 2012;2(2):303–26.

    Article  CAS  Google Scholar 

  16. Maitlis PM, Zanotti V. The role of electrophilic species in the Fischer–Tropsch reaction. Chem Commun. 2009;45(13):1619–34.

    Google Scholar 

  17. Adesina AA. Hydrocarbon synthesis via Fischer–Tropsch reaction: travails and triumphs. Appl Catal A. 1996;138(2):345–67.

    Article  CAS  Google Scholar 

  18. Van Der Laan GP, Beenackers A. Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal Rev. 1999;41(3–4):255–318.

    Article  Google Scholar 

  19. Bell AT. Catalytic synthesis of hydrocarbons over group VIII metals. A discussion of the reaction mechanism. Catal Rev. 1981;23(1–2):203–32.

    Article  CAS  Google Scholar 

  20. Dry ME. Practical and theoretical aspects of the catalytic Fischer–Tropsch process. Appl Catal A. 1996;138(2):319–44.

    Article  CAS  Google Scholar 

  21. Davis BH. Fischer–Tropsch synthesis: current mechanism and futuristic needs. Fuel Process Technol. 2001;71(1):157–66.

    Article  CAS  Google Scholar 

  22. Zimmerman WH, Bukur DB. Reaction kinetics over iron catalysts used for the Fischer–Tropsch synthesis. Can J Chem Eng. 1990;68(2):292–301.

    Article  CAS  Google Scholar 

  23. Botes FG. The effects of water and CO2 on the reaction kinetics in the iron-based low-temperature Fischer–Tropsch synthesis: a literature review. Catal Rev. 2008;50(4):471–91.

    Article  CAS  Google Scholar 

  24. Dry ME. High quality diesel via the Fischer–Tropsch process–a review. J Chem Technol Biotechnol. 2002;77(1):43–50.

    Article  CAS  Google Scholar 

  25. Martínez A, Prieto G. The application of zeolites and periodic mesoporous silicas in the catalytic conversion of synthesis gas. Top Catal. 2009;52(1–2):75.

    Article  CAS  Google Scholar 

  26. Kuipers EW, Vinkenburg IH, Oosterbeek H. Chain length dependence of α-olefin readsorption in Fischer–Tropsch synthesis. J Catal. 1995;152(1):137–46.

    Article  CAS  Google Scholar 

  27. Lu Y, Lee T. Influence of the feed gas composition on the Fischer–Tropsch synthesis in commercial operations. J Nat Gas Chem. 2007;16(4):329–41.

    Article  CAS  Google Scholar 

  28. Hamelinck CN, Faaij APC, den Uil H, Boerrigter H. Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential. Energy. 2004;29(11):1743–71.

    Article  CAS  Google Scholar 

  29. De Klerk A, Furimsky E. Catalysis in the refining of Fischer–Tropsch syncrude. Cambridge: Royal Society of Chemistry; 2010.

    Google Scholar 

  30. Zhang QH, Cheng K, Kang JC, Deng W, Wang Y. Fischer–Tropsch catalysts for the production of hydrocarbon fuels with high selectivity. ChemSusChem. 2014;7(5):1251–64.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang QH, Kang JC, Wang Y. Development of novel catalysts for Fischer–Tropsch synthesis: tuning the product selectivity. ChemCatChem. 2010;2(9):1030–58.

    Article  CAS  Google Scholar 

  32. de Klerk A. Fischer–Tropsch fuels refinery design. Energy Environ Sci. 2011;4(4):1177–205.

    Article  CAS  Google Scholar 

  33. Kang JC, Zhang S, Zhang QH, Wang Y. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Angew Chem Int Ed. 2009;121(14):2603–6.

    Article  Google Scholar 

  34. Yu GB, Sun B, Pei Y, Xie SH, Yan SR, Qiao MH, Fan KN, Zhang XX, Zong BN. Fe x O y @C spheres as an excellent catalyst for Fischer–Tropsch synthesis. J Am Chem Soc. 2010;132(3):935–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sun B, Qiao MH, Fan KN, Ulrich J, Tao F. Fischer–Tropsch synthesis over molecular sieve supported catalysts. ChemCatChem. 2011;3(3):542–50.

    Article  CAS  Google Scholar 

  36. Sartipi S, Makkee M, Kapteijn F, Gascon J. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review. Cat Sci Technol. 2014;4(4):893–907.

    Article  CAS  Google Scholar 

  37. Schulz H. Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A. 1999;186(1):3–12.

    Article  CAS  Google Scholar 

  38. Enger BC, Holmen A. Nickel and Fischer–Tropsch synthesis. Catal Rev. 2012;54(4):437–88.

    Article  CAS  Google Scholar 

  39. Luque R, de la Osa AR, Campelo JM, Romero AA, Valverde JL, Sanchez P. Design and development of catalysts for Biomass-To-Liquid-Fischer–Tropsch (BTL-FT) processes for biofuels production. Energy Environ Sci. 2012;5(1):5186–202.

    Article  CAS  Google Scholar 

  40. Dry M, Steynberg A. Fischer–Tropsch technology. Stud Surf Sci Catal. Elsevier Science & Technology. 2004.

    Google Scholar 

  41. Dry ME. The Fischer–Tropsch process: 1950–2000. Catal Today. 2002;71(3):227–41.

    Article  CAS  Google Scholar 

  42. van Steen E, Claeys M. Fischer–Tropsch catalysts for the Biomass-To-Liquid (BTL)-Process. Chem Eng Technol. 2008;31(5):655–66.

    Article  CAS  Google Scholar 

  43. Khodakov AY, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer−Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev. 2007;107(5):1692–744.

    Article  CAS  PubMed  Google Scholar 

  44. Sonal PKK, Upadhyayula S. Synthesis of C5+ hydrocarbons from low H2/CO ratio syngas over silica supported bimetallic Fe–Co catalyst. Catal Today. 2017;291:133–45.

    Article  CAS  Google Scholar 

  45. Sonal KK, Pant KK, Upadhyayula S. Synergistic effect of Fe–Co bimetallic catalyst on FTS and WGS activity in the Fischer–Tropsch process: a kinetic study. Ind Eng Chem Res. 2017;56(16):4659–71.

    Article  CAS  Google Scholar 

  46. De Vos RM, Verweij H. High-selectivity, high-flux silica membranes for gas separation. Science. 1998;279(5357):1710–1.

    Article  PubMed  Google Scholar 

  47. Ennaert T, Van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels BF. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem Soc Rev. 2016;45(3):584–611.

    Article  CAS  PubMed  Google Scholar 

  48. Goldwasser MR, Navas F, Zurita MJP, Cubeiro ML, Lujano E, Franco C, Jiménez FG, Jaimes E, Moronta D. Iron-pentasil molecular sieves: characterisation and catalytic behaviour in syngas conversion. Appl Catal A. 1993;100(1):85–95.

    Article  CAS  Google Scholar 

  49. Botes FG, Böhringer W. The addition of HZSM-5 to the Fischer–Tropsch process for improved gasoline production. Appl Catal A. 2004;267(1):217–25.

    Article  CAS  Google Scholar 

  50. Martínez A, López C. The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer–Tropsch products over hybrid catalysts. Appl Catal A. 2005;294(2):251–9.

    Article  CAS  Google Scholar 

  51. Martínez A, Rollán J, Arribas MA, Cerqueira HS, Costa AF, Aguiar EFS. A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer–Tropsch catalysts. J Catal. 2007;249(2):162–73.

    Article  CAS  Google Scholar 

  52. Martínez A, Valencia S, Murciano R, Cerqueira HS, Costa AF, Aguiar EFS. Catalytic behavior of hybrid Co/SiO2-(medium-pore) zeolite catalysts during the one-stage conversion of syngas to gasoline. Appl Catal A. 2008;346(1):117–25.

    Article  CAS  Google Scholar 

  53. Fujimoto K, Adachi M, Tominaga H. Direct synthesis of isoparaffins from synthesis gas. Chem Lett. 1985;14(6):783–6.

    Article  Google Scholar 

  54. Hammer H, Joisten M, Lüngen S, Winkler D. New zeolites in Fischer–Tropsch synthesis. Int J Energy Res. 1994;18(2):223–31.

    Article  CAS  Google Scholar 

  55. Marchetti SG, Cagnoli MV, Alvarez AM, Bengoa JF, Mercader RC, Yeramián AA. Study of the Fe/zeolite-L system: part I: Characterization of iron species and their structural properties. Appl Surf Sci. 2000;165(2):91–9.

    Article  CAS  Google Scholar 

  56. Latham K, Round CI, Williams CD. Synthesis, further characterisation and catalytic activity of iron-substituted zeolite LTL, prepared using tetrahedral oxo-anion species. Microporous Mesoporous Mater. 2000;38(2):333–44.

    Article  CAS  Google Scholar 

  57. Cagnoli MV, Gallegos NG, Alvarez AM, Bengoa JF, Yeramián AA, Schmal M, Marchetti SG. Catalytic CO hydrogenation on potassic Fe/zeolite LTL. Appl Catal A. 2002;230(1):169–76.

    Article  CAS  Google Scholar 

  58. Guczi L, Kiricsi I. Zeolite supported mono-and bimetallic systems: structure and performance as CO hydrogenation catalysts. Appl Catal A. 1999;186(1):375–94.

    Article  CAS  Google Scholar 

  59. Pour AN, Zamani Y, Tavasoli A, Shahri SMK, Taheri SA. Study on products distribution of iron and iron–zeolite catalysts in Fischer–Tropsch synthesis. Fuel. 2008;87(10):2004–12.

    Article  CAS  Google Scholar 

  60. Li B, Sun B, Qian X, Li W, Wu Z, Sun Z, Qiao M, Duke M, Zhao D. In-situ crystallization route to nanorod-aggregated functional ZSM-5 microspheres. J Am Chem Soc. 2013;135(4):1181–4.

    Article  CAS  PubMed  Google Scholar 

  61. Sartipi S, Alberts M, Santos VP, Nasalevich M, Gascon J, Kapteijn F. Insights into the catalytic performance of mesoporous H-ZSM-5-supported cobalt in Fischer–Tropsch synthesis. ChemCatChem. 2014;6(1):142–51.

    Article  CAS  Google Scholar 

  62. Ngamcharussrivichai C, Imyim A, Li X, Fujimoto K. Active and selective bifunctional catalyst for gasoline production through a slurry-phase Fischer–Tropsch synthesis. Ind Eng Chem Res. 2007;46(21):6883–90.

    Article  CAS  Google Scholar 

  63. Kang J, Cheng K, Zhang L, Zhang Q, Ding J, Hua W, Lou Y, Zhai Q, Wang Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer–Tropsch catalysts for the production of C5–C11 isoparaffins. Angew Chem Int Ed. 2011;123(22):5306–9.

    Article  Google Scholar 

  64. Sartipi S, Parashar K, Makkee M, Gascon J, Kapteijn F. Breaking the Fischer–Tropsch synthesis selectivity: direct conversion of syngas to gasoline over hierarchical Co/H-ZSM-5 catalysts. Cat Sci Technol. 2013;3(3):572–5.

    Article  CAS  Google Scholar 

  65. Van Donk S, Janssen AH, Bitter JH, de Jong KP. Generation, characterization, and impact of mesopores in zeolite catalysts. Catal Rev. 2003;45(2):297–319.

    Article  CAS  Google Scholar 

  66. Hartmann M. Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. Angew Chem Int Ed. 2004;43(44):5880–2.

    Article  CAS  Google Scholar 

  67. Groen JC, Moulijn JA, Pérez-Ramírez J. Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem. 2006;16(22):2121–31.

    Article  CAS  Google Scholar 

  68. Schmidt W. Solid catalysts on the nanoscale: design of complex morphologies and pore structures. ChemCatChem. 2009;1(1):53–67.

    Article  CAS  Google Scholar 

  69. Meng X, Nawaz F, Xiao F-S. Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today. 2009;4(4):292–301.

    Article  CAS  Google Scholar 

  70. Chal R, Gerardin C, Bulut M, Van Donk S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem. 2011;3(1):67–81.

    Article  CAS  Google Scholar 

  71. Verboekend D, Pérez-Ramírez J. Design of hierarchical zeolite catalysts by desilication. Cat Sci Technol. 2011;1(6):879–90.

    Article  CAS  Google Scholar 

  72. Chen L-H, Li X-Y, Rooke JC, Zhang Y-H, Yang X-Y, Tang Y, Xiao F-S, Su B-L. Hierarchically structured zeolites: synthesis, mass transport properties and applications. J Mater Chem. 2012;22(34):17381–1740373.

    Article  CAS  Google Scholar 

  73. Hartmann M, Machoke AG, Schwieger W. Catalytic test reactions for the evalution of hierarchical zeolites. Chem Soc Rev. 2016;45(12):3313–30.

    Article  CAS  PubMed  Google Scholar 

  74. Valtchev V, Mintova S. Hierarchical zeolites. MRS Bull. 2016;41(9):689–93.

    Article  CAS  Google Scholar 

  75. de Jong KP, Zečević J, Friedrich H, de Jongh PE, Bulut M, Van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angew Chem Int Ed. 2010;122(52):10272–6.

    Article  Google Scholar 

  76. Pereira ALC, González-Carballo JM, Pérez-Alonso FJ, Rojas S, Fierro JLG, do Carmo Rangel M. Effect of the mesostructuration of the beta zeolite support on the properties of cobalt catalysts for Fischer–Tropsch synthesis. Top Catal. 2011;54(1–4):179–89.

    Article  CAS  Google Scholar 

  77. Cheng K, Kang J, Huang S, You Z, Zhang Q, Ding J, Hua W, Lou Y, Deng W, Wang Y. Mesoporous beta zeolite-supported ruthenium nanoparticles for selective conversion of synthesis gas to C5–C11 isoparaffins. ACS Catal. 2012;2(3):441–9.

    Article  CAS  Google Scholar 

  78. Cheng K, Zhang L, Kang J, Peng X, Zhang Q, Wang Y. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles. Chem Eur J. 2015;21(5):1928–37.

    Article  CAS  PubMed  Google Scholar 

  79. Sartipi S, Parashar K, Valero-Romero MJ, Santos VP, van der Linden B, Makkee M, Kapteijn F, Gascon J. Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: advantages, limitations, and mechanistic insight. J Catal. 2013;305:179–90.

    Article  CAS  Google Scholar 

  80. Sartipi S, Alberts M, Meijerink MJ, Keller TC, Pérez-Ramírez J, Gascon J, Kapteijn F. Towards liquid fuels from bio-syngas: effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts. ChemSusChem. 2013;6(9):1646–50.

    Article  CAS  PubMed  Google Scholar 

  81. Gill SS, Tsolakis A, Dearn KD, Rodríguez-Fernández J. Combustion characteristics and emissions of Fischer–Tropsch diesel fuels in IC engines. Prog Energy Combust. 2011;37(4):503–23.

    Article  CAS  Google Scholar 

  82. Peng X, Cheng K, Kang J, Gu B, Yu X, Zhang Q, Wang Y. Impact of hydrogenolysis on the selectivity of the Fischer–Tropsch synthesis: diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles. Angew Chem Int Ed. 2015;54(15):4553–6.

    Article  CAS  Google Scholar 

  83. Pabst K, Kraushaar-Czarnetzki B, Schaub G. Combination of Fischer–Tropsch synthesis and hydroprocessing in a single-stage reactor. Part II. Effect of catalyst combinations. Ind Eng Chem Res. 2013;52(26):8988–95.

    Article  CAS  Google Scholar 

  84. Freitez A, Pabst K, Kraushaar-Czarnetzki B, Schaub G. Single-stage Fischer–Tropsch synthesis and hydroprocessing: the hydroprocessing performance of Ni/ZSM-5/γ-Al2O3 under Fischer–Tropsch conditions. Ind Eng Chem Res. 2011;50(24):13732–41.

    Article  CAS  Google Scholar 

  85. Tsubaki N, Yoneyama Y, Michiki K, Fujimoto K. Three-component hybrid catalyst for direct synthesis of isoparaffin via modified Fischer–Tropsch synthesis. Catal Commun. 2003;4(3):108–11.

    Article  CAS  Google Scholar 

  86. Bessell S. Support effects in cobalt-based Fischer–Tropsch catalysis. Appl Catal A. 1993;96(2):253–68.

    Article  CAS  Google Scholar 

  87. Calleja G, de Lucas A, van Grieken R. Co/HZSM-5 catalyst for syngas conversion: Influence of process variables. Fuel. 1995;74(3):445–51.

    Article  CAS  Google Scholar 

  88. Kang S-H, Ryu J-H, Kim J-H, Prasad PSS, Bae JW, Cheon J-Y, Jun K-W. ZSM-5 supported cobalt catalyst for the direct production of gasoline range hydrocarbons by Fischer–Tropsch synthesis. Catal Lett. 2011;141(10):1464.

    Article  CAS  Google Scholar 

  89. Sartipi S, van Dijk JE, Gascon J, Kapteijn F. Toward bifunctional catalysts for the direct conversion of syngas to gasoline range hydrocarbons: H-ZSM-5 coated Co versus H-ZSM-5 supported Co. Appl Catal A. 2013;456:11–22.

    Article  CAS  Google Scholar 

  90. He J, Liu Z, Yoneyama Y, Nishiyama N, Tsubaki N. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas. Chem-Eur J. 2006;12(32):8296–304.

    Article  CAS  PubMed  Google Scholar 

  91. Li X, He J, Meng M, Yoneyama Y, Tsubaki N. One-step synthesis of H-β zeolite-enwrapped Co/Al2O3 Fischer–Tropsch catalyst with high spatial selectivity. J Catal. 2009;265(1):26–34.

    Article  CAS  Google Scholar 

  92. Huang X, Hou B, Wang J, Li D, Jia L, Chen J, Sun Y. CoZr/H-ZSM-5 hybrid catalysts for synthesis of gasoline-range isoparaffins from syngas. Appl Catal A. 2011;408(1):38–46.

    Article  CAS  Google Scholar 

  93. Li C, Xu H, Kido Y, Yoneyama Y, Suehiro Y, Tsubaki N. A capsule catalyst with a zeolite membrane prepared by direct liquid membrane crystallization. ChemSusChem. 2012;5(5):862–6.

    Article  CAS  PubMed  Google Scholar 

  94. Sun B, Yu G, Lin J, Xu K, Pei Y, Yan S, Qiao M, Fan K, Zhang X, Zong B. A highly selective Raney Fe@ HZSM-5 Fischer–Tropsch synthesis catalyst for gasoline production: one-pot synthesis and unexpected effect of zeolites. Cat Sci Technol. 2012;2(8):1625–9.

    Article  CAS  Google Scholar 

  95. He J, Yoneyama Y, Xu B, Nishiyama N, Tsubaki N. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins. Langmuir. 2005;21(5):1699–702.

    Article  CAS  PubMed  Google Scholar 

  96. Jin Y, Yang R, Mori Y, Sun J, Taguchi A, Yoneyama Y, Abe T, Tsubaki N. Preparation and performance of Co based capsule catalyst with the zeolite shell sputtered by Pd for direct isoparaffin synthesis from syngas. Appl Catal A. 2013;456:75–81.

    Article  CAS  Google Scholar 

  97. Lin Q, Zhang Q, Yang G, Chen Q, Li J, Wei Q, Tan Y, Wan H, Tsubaki N. Insights into the promotional roles of palladium in structure and performance of cobalt-based zeolite capsule catalyst for direct synthesis of C5–C11 iso-paraffins from syngas. J Catal. 2016;344:378–88.

    Article  CAS  Google Scholar 

  98. Yamane N, Wang Y, Li J, He Y, Zhang P, Nguyen L, Tan L, Ai P, Peng X, Wang Y, Yang G, Tsubaki N. Building premium secondary reaction field with a miniaturized capsule catalyst to realize efficient synthesis of a liquid fuel directly from syngas. Cat Sci Technol. 2017;7(10):1996–2000.

    Article  CAS  Google Scholar 

  99. Zhao T-S, Chang J, Yoneyama Y, Tsubaki N. Selective synthesis of middle isoparaffins via a two-stage Fischer–Tropsch reaction: activity investigation for a hybrid catalyst. Ind Eng Chem Res. 2005;44(4):769–75.

    Article  CAS  Google Scholar 

  100. Subiranas AM, Schaub G. Combining Fischer–Tropsch (FT) and hydrocarbon reactions under FT reaction conditions: model compound and combined-catalyst studies. Int J Chem React Eng. 2009;7:A31.

    Google Scholar 

  101. Jothimurugesan K, Gangwal SK. Titania-supported bimetallic catalysts combined with HZSM-5 for Fischer–Tropsch synthesis. Ind Eng Chem Res. 1998;37(4):1181–8.

    Article  CAS  Google Scholar 

  102. Karre AV, Kababji A, Kugler EL, Dadyburjor DB. Effect of addition of zeolite to iron-based activated-carbon-supported catalyst for Fischer–Tropsch synthesis in separate beds and mixed beds. Catal Today. 2012;198(1):280–8.

    Article  CAS  Google Scholar 

  103. Pour AN, Housaindokht MR, Tayyari SF, Zarkesh J, Alaei MR. Kinetic studies of the Fischer–Tropsch synthesis over La, Mg and Ca promoted nano-structured iron catalyst. J Nat Gas Sci Eng. 2010;2(2):61–8.

    Article  CAS  Google Scholar 

  104. He L, Teng B, Zhang Y, Fan M. Development of composited rare-earth promoted cobalt-based Fischer–Tropsch synthesis catalysts with high activity and selectivity. Appl Catal A. 2015;505:276–83.

    Article  CAS  Google Scholar 

  105. Udaya V, Rao S, Gormley RJ. Bifunctional catalysis in syngas conversions. Catal Today. 1990;6(3):207–34.

    Article  CAS  Google Scholar 

  106. Gormley RJ, Rao VUS, Anderson RR, Schehl RR, Chi RDH. Secondary reactions on metal-zeolite catalysts used in synthesis gas conversion. J Catal. 1988;113(1):193–205.

    Article  CAS  Google Scholar 

  107. Bessell S. Investigation of bifunctional zeolite supported cobalt Fischer–Tropsch catalysts. Appl Catal A. 1995;126(2):235–44.

    Article  CAS  Google Scholar 

  108. Bao J, He J, Zhang Y, Yoneyama Y, Tsubaki N. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angew Chem Int Ed. 2008;120(2):359–62.

    Article  Google Scholar 

  109. Yang G, Tsubaki N, Shamoto J, Yoneyama Y, Zhang Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. J Am Chem Soc. 2010;132(23):8129–36.

    Article  CAS  PubMed  Google Scholar 

  110. He J, Xu B, Yoneyama Y, Nishiyama N, Tsubaki N. Designing a new kind of capsule catalyst and its application for direct synthesis of middle isoparaffins from synthesis gas. Chem Lett. 2004;34(2):148–9.

    Article  Google Scholar 

  111. Yang G, He J, Yoneyama Y, Tan Y, Han Y, Tsubaki N. Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins. Appl Catal A. 2007;329:99–105.

    Article  CAS  Google Scholar 

  112. Yang G, He J, Zhang Y, Yoneyama Y, Tan Y, Han Y, Vitidsant T, Tsubaki N. Design and modification of zeolite capsule catalyst, a confined reaction field, and its application in one-step isoparaffin synthesis from syngas. Energy Fuel. 2008;22(3):1463–8.

    Article  CAS  Google Scholar 

  113. Enache DI, Rebours B, Roy-Auberger M, Revel R. In situ XRD study of the influence of thermal treatment on the characteristics and the catalytic properties of cobalt-based Fischer–Tropsch catalysts. J Catal. 2002;205(2):346–53.

    Article  CAS  Google Scholar 

  114. Xu K, Cheng Y, Sun B, Pei Y, Yan S-R, Qiao M-H, Zhang X-X, Zong B-N. Fischer–Tropsch synthesis over skeletal Co@HZSM-5 core–shell catalysts. Acta Phys Chim Sin. 2015;31(6):1137–44.

    CAS  Google Scholar 

  115. Bao J, Yang G, Okada C, Yoneyama Y, Tsubaki N. H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas. Appl Catal A. 2011;397(1):195–200.

    Article  CAS  Google Scholar 

  116. Wang H, Xu K, Cheng Y, Pei Y, Yan S, Qiao M, Li ZH, Zong B. Reversible selectivity modulation of gasoline and diesel by a facile metal-salt-modified Fischer–Tropsch synthesis strategy. ChemCatChem. 2016;24(8):3701–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The support from the National Basic Research Program of China (2016YFB0301602), the National Science Foundation of China (21373055), the International Joint Laboratory on Resource Chemistry (IJLRC), and the Science and Technology Commission of Shanghai Municipality (08DZ2270500) are cordially acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghua Qiao or Baoning Zong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, H., Pei, Y., Qiao, M., Zong, B. (2017). Design of Bifunctional Solid Catalysts for Conversion of Biomass-Derived Syngas into Biofuels. In: Fang, Z., Smith Jr., R., Li, H. (eds) Production of Biofuels and Chemicals with Bifunctional Catalysts. Biofuels and Biorefineries, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-10-5137-1_4

Download citation

Publish with us

Policies and ethics