Skip to main content

ROS-Induced Transcription Factors During Oxidative Stress in Plants: A Tabulated Review

  • Chapter
  • First Online:
Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress

Abstract

Different abiotic stresses lead to overproduction of reactive oxygen species (ROS) in plants which are highly reactive, toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises of free radicals including superoxide radicals and hydroxyl radicals and molecular forms like hydrogen peroxide and singlet oxygen. Oxidative stress has been devastating effects on the overall growth of plant and it results in loss of vigour and germination. In recent years, it has become a well-known fact that reactive oxygen intermediates are produced in plants as signalling molecules to control metabolic processes such as programmed cell death, abiotic stress responses, pathogen defence and systemic signalling. In response to stress, plants respond through crosstalk between different signal transduction pathways (abscisic acid dependent and abscisic independent), involving transcription factors (TFs). Transcription factors are also called as regulons, having a pivotal role in regulation of gene expression in plants. In the present attempt, we present tabulated review of TFs, proteins, genes and enzymes which have a central role in combating oxidative stress through gene expression regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ABF:

ABRE-binding factor

ABRE:

ABA-responsive element

APX:

Ascorbate peroxidase

ARCK:

ABA and osmotic stress-inducible receptor-like cytosolic kinase

AREB1:

ABA-responsive element-binding protein

ATAF:

Arabidopsis transcription activation factor

ATAF:

Arabidopsis transcription activation factor

AtMYC2:

Arabidopsis thaliana myelocytomatosis 2

BOS1:

Botrytis-susceptible 1

bZIP:

Basic leucine zipper

CaERFLP:

Capsicum annuum ethylene-responsive factor-like protein

CAT:

Catalases

CBF1C:

Repeat-binding factor

CRK:

Cysteine-rich receptor-like kinase

CRLK:

Calcium-regulated RLK

CRT/DRE:

C-repeat/dehydration-responsive element

CUC:

Cup-shaped cotyledon

DEAR1:

DREB and EAR motif protein 1

DHAR:

Dehydroascorbate reductase

DREB:

Dehydration-responsive element-binding protein

DREB:

Dehydration-responsive element-binding protein

EAR:

Ethylene response factor-associated amphiphilic repression

EREBP:

Ethylene-responsive element-binding protein

ERF:

Ethylene-responsive element-binding factors

ERF:

Ethylene-responsive factor

ET:

Ethylene

GHR:

Guard cell hydrogen peroxide

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSSG:

Oxidized glutathione

H2O2 :

Hydrogen peroxide superoxide

HOS1:

High expression osmotically responsive gene 1

HSFA2:

Heat shock transcription factor A2

JA:

Jasmonic acid

LOO:

Lipid peroxyl radical

LOOH:

Lipid hydroperoxide

MDHAR:

Monodehydroascorbate reductase

MYB:

Myeloblastosis

MYC:

Myelocytomatosis

MYC:

Myelocytomatosis

NAC:

NAM(no apical meristem)

NADPH:

Nicotinamide adenine dinucleotide phosphate

NTL6:

NAC with transmembrane motif-like 6

O2 − :

Hydroxyl radicals

O2 :

Singlet oxygen

OPBP1:

Osmotin promoter-binding protein

OsBIERF:

Oryza sativa benzothiadiazole-induced ethylene-responsive transcription factors

OSSIPK:

O. sativa stress-induced protein kinase

PCD:

Programmed cell death

PERK:

Proline-rich extension-like kinase

PLP:

Pyridoxal-5-phosphate

PSTOL:

Phosphorus starvation tolerance

RD:

Responsive to dehydration

ROS:

Reactive oxygen species

RPK:

Receptor-like protein kinase

SIRLK:

Salt-induced receptor-like kinase

SLAIM:

Solanum lycopersicum abscisic acid-induced Myb1

SOD:

Superoxide dismutase

TaPIMP:

Triticum aestivum pathogen-induced membrane protein

TFs:

Transcriptional factors

TSi:

Tobacco stress-induced gene

WRKY:

W(tryptophan), R (arginine), K (lysine), Y(tyrosine)

ZAT:

Zinc finger of Arabidopsis thaliana

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abu Qamar S, Luo HL, Laluk K, Mickelbart MV, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58:347–360

    Article  CAS  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  CAS  PubMed  Google Scholar 

  • Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, Singh NK (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91(3):385–395

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heatrhj LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate– ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai L, Zhang G, Zhou Y, Zhang Z, Wang W, Du Y, Wu Z, Song CP (2009) Plasma membrane-associated proline-rich extensin-likereceptor kinase 4, a novel regulator of Ca signalling, is required for abscisic acid responses in Arabidopsis thaliana. Plant J 60:314–327

    Article  CAS  PubMed  Google Scholar 

  • Cao YF, Song FM, Goodman RM, Zheng Z (2006) Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J Plant Physiol 163:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236

    Article  CAS  PubMed  Google Scholar 

  • Ciftci-Yilmaz S, Morsy MR, Song LH, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J, Connolly EL, Mittler R (2007) The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem 282:9260–9268

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6(4):145–150

    Article  CAS  PubMed  Google Scholar 

  • Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745–757

    Article  CAS  PubMed  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Google Scholar 

  • Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36(1):17–29

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119(3):355–364

    Article  CAS  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LSP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Mizukado S, Fujita Y, Ichikawa T, Nakazawa M, Seki M, Matsui M, Yamaguch-Shinozaki K, Shinozaki K (2007) Identification of stress-tolerance-related transcription-factor genes via mini-scale full length cDNA over-eXpressor (FOX) gene hunting system. Biochem Biophys Res Commun 364(2):250–257

    Article  CAS  PubMed  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143(1):81–96

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124(4):1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giri J, Vij S, Dansanam PK, Tyagi AK (2011) Rice A20/AN1 zincfinger containing stress-associated proteins (SAP1/11) and a receptor like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191:721–732

    Article  CAS  PubMed  Google Scholar 

  • Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P (2004) Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol 55(4):607–618

    Article  CAS  PubMed  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130(2):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul 21(2):79–102

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Google Scholar 

  • Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24:2546–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inze D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6(2):153–158

    Article  CAS  Google Scholar 

  • Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp hordei in Arabidopsis. Plant J 56:867–880

    Article  CAS  PubMed  Google Scholar 

  • Jimenez A, Hernandez JA, Pastori G, Luis A, Sevilla F (1998) Role of the ascorbate- glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118(4):1327–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic-nitrogen use efficiency and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.) Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 178:9–18

    Article  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016a) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Khan MIR, Khan NA, Masood A, Per TS, Asgher M (2016b) Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use-efficiency of nitrogen and sulfur, and glutathione production in mustard. Front Plant Sci 7:44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun D-J, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25(3):247–259

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40(1):75–87

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi F, Maeta E, Terashima A, Kawaura K, Ogihara Y, Takumi S (2008) Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J Exp bot 59(4):891–905

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Yadav A, Prasad M (2011) Role of plant transcription factors in abiotic stress tolerance. In: Shanker A (ed) Abiotic stress response in plants – physiological, biochemical and genetic perspectives. ISBN: 978-953-307-672-0, InTech. Available from: http://www.intechopen.com/books/abiotic-stress-response-in-plants-physiological-biochemical-and-geneticperspectives/role-of-plant-transcriptionfactors-in-abiotic-stress-tolerance

  • Lee JH, Hong JP, Oh SK, Lee S, Choi D, Kim WT (2004) The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol 55:61–81

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Zou H, Wei W, Hao YJ, Tian AG, Huang J, Liu Y-F, Zhang J-S, Chen S-Y (2008a) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228(2):225–240

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Zhang J-S, Chen S-Y, Zhang W-K (2008b) Role of soybean GmbZip132 under abscisic acid and salt stresses. J Integr Plant Biol 50(2):221–230

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luis A, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp bot 53(372):1255–1272

    Article  Google Scholar 

  • Luis A, Sandalio LM, Altomare DA, Zilinskas BA (2003) Mitochondrial and peroxisomal magnese superoxide dismutase: differential expression during leaf sense scene. J Exp Bot 54:923–933

    Article  Google Scholar 

  • Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2005) Tocopherols protect Synechocystis sp .strain PCC 6803 from lipid peroxidation. Plant Physiol 138:1422–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez JP, Araya H (2010) Ascorbate–glutathione cycle: enzymatic and non-enzymatic integrated mechanisms and its biomolecular regulation. In: Ascorbate-glutathione pathway and stress tolerance in plants. Springer Netherlands, pp 303–322

    Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15(11):2551–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18(10):2749–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 101(16):6309–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53(372):1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, Ruiz-Lara S, Casaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33:2191–2208

    Article  CAS  PubMed  Google Scholar 

  • Osakabe Y, Maruyama K, Seki M, Satou M, Shinozaki K, Yamaguchi-Shinozaki K (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17:1105–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Mizuno S, Tanaka H, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J Biol Chem 285:9190–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329

    Article  CAS  PubMed  Google Scholar 

  • Pang CH, Wang BS (2010) Role of ascorbate peroxidase and glutathione reductase in ascorbate–glutathione cycle and stress tolerance in plants. In: Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 91–113

    Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco TSI1 gene encoding an EREBP/AP2- type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng XX, Tang XK, Zhou PL, Hu YJ, Deng XB, He Y, Wang HH (2011) Isolation and expression patterns of rice WRKY82 transcription factor gene responsive to both biotic and abiotic stresses. Agric Sci China 10:893–901

    Article  CAS  Google Scholar 

  • Pitorre D, Llauro C, Jobet E, Guilleminot J, Brizard JP, Delseny M, Lasserre E (2010) RLK7, a leucine-rich repeat receptor-like kinase, is required for proper germination speed and tolerance to oxidative stress in Arabidopsis thaliana. Planta 232:1339–1353

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17(6):369–381

    Article  CAS  PubMed  Google Scholar 

  • Qiu YP, Yu DQ (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47

    Article  CAS  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50(1):2–18

    Article  CAS  PubMed  Google Scholar 

  • Raven EL (2000) Peroxidase-catalyzed oxidation of ascorbate. Structural, spectroscopic and mechanistic correlations in ascorbate peroxidase. Subcell Biochem 35:317–349

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Davletova S, Liang HJ, Mittler R (2004a) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1(4):311–315

    Article  CAS  PubMed  Google Scholar 

  • Saibo NJ, Lourenço T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103(4):609–623

    Article  CAS  PubMed  Google Scholar 

  • Schenke D, Boettcher C, Scheel D (2011) Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant Cell Environ 34(11):1849–1864

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186(2):471–483

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp bot 58(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70:599–613

    Article  CAS  PubMed  Google Scholar 

  • Tran L-SP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress promoter. Plant Cell 16(9):2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui T, Kato W, Asada Y, Sako K, Sato T, Sonoda Y, Ichikawa T (2009) DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. J Plant Res 122(6):633–643

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Ahmad P, Panda BB, Tuteja R (2009) Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res 681(2):134–149

    Article  CAS  PubMed  Google Scholar 

  • Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127

    Article  CAS  PubMed  Google Scholar 

  • Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Di Maro A, Coraggio I, Genga A (2006) The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Pathol 69:26–42

    Article  CAS  Google Scholar 

  • Vannini C, Campa M, Iriti M, Genga A, Faoro F, Carravieri S, Rotino GL, Rossoni M, Spinardi A, Bracale M (2007) Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Sci 173:231–239

    Article  CAS  Google Scholar 

  • Wang H, Hao J, Chen X (2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65(6):799–815

    Article  CAS  PubMed  Google Scholar 

  • Woodrow P, Pontecorvo G, Ciarmiello LF, Annunziata MG, Fuggi A, Carillo P (2012) Transcription factors and genes in abiotic stress. In: Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 317–357

    Google Scholar 

  • Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS (2010) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep 37:3703–3712

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148(4):1938–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW (2010a) A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem 285:7119–7126

    Article  CAS  PubMed  Google Scholar 

  • Yousuf, P. Y., Hakeem, K. U. R., Chandna, R., Ahmad, P., (2012). Role of glutathione reductase in plant abiotic stress. In: Abiotic stress responses in plants. Springer, New York, p 149–158

    Google Scholar 

  • Zhang GY, Chen M, Li LC, Xu ZS, Chen XP, Guo JM, Ma YZ (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    Article  CAS  PubMed  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66(6):675–683

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kalia, R., Sareen, S., Nagpal, A., Katnoria, J., Bhardwaj, R. (2017). ROS-Induced Transcription Factors During Oxidative Stress in Plants: A Tabulated Review. In: Khan, M., Khan, N. (eds) Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-10-5254-5_6

Download citation

Publish with us

Policies and ethics