Skip to main content

Potential of Microbial Volatile Organic Compounds for Crop Protection Against Phytopathogenic Fungi

  • Chapter
  • First Online:
Volatiles and Food Security

Abstract

Microbial volatile organic compounds (MVOCs) are produced by a wide range of microorganisms ranging from bacteria and fungi. Earlier experimental results indicated that MVOCs are eco-friendly and can be exploited as agents that improve plant growth, productivity, and disease resistance in agricultural practices. Studies conducted in open fields indicated that MVOCs can effectively contribute to enhanced crop production and protection against diseases. In this review chapter, we have discussed on the diversity of MVOCs and further focused on their potential in exploiting these bioactive molecules in sustainable eco-friendly agriculture for improving plant growth, production, and protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

~:

More than

%:

Percentage

β:

Beta

C:

Carbon

°C:

Degree Celsius

BD:

Butanediol

DMDS:

Dimethyl disulfide

et al.:

Associates

ISR:

Induced systemic resistance

kPa:

Kilopascals

MVOCs:

Microbial volatile organic compounds

PGPF:

Plant growth-promoting fungi

PGPR:

Plant growth-promoting rhizobacteria

sp.:

Species (singular)

spp.:

Species (plural)

VOCs:

Volatile organic compounds

VPEs:

Volatile-producing endophytes

References

  • Abd El-Daim IA, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379:337–350

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Evaluation of plant growth promoting activities of rhizobacterium Pseudomonas putida under herbicide-stress. Ann Microbiol 62:1531–1540

    Article  CAS  Google Scholar 

  • Alstrom S (2001) Characteristics of bacteria from oil seed rape in relation to their biocontrol activity against Verticillium dahliae. J Phytopathol 149:57–64

    Article  Google Scholar 

  • Alstrom I, Burns RG (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol Fertil Soils 7:232–238

    Article  Google Scholar 

  • Araki A, Eitaki Y, Kawai T, Kanazawa A, Takeda M, Kishi R (2009) Diffusive sampling and measurement of microbial volatile organic compounds in indoor air. Indoor Air 19:421–432

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Connor EC (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    Article  CAS  PubMed  Google Scholar 

  • Claeson AS, Sandstrom M, Sunesson AL (2007) Volatile organic compounds (VOCs) emitted from materials collected from buildings affected by microorganisms. J Environ Monit 9:240–245

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37:813–826

    Article  PubMed  Google Scholar 

  • Danielsson J, Reva O, Meijer J (2007) Protection of oilseed rape (Brassica napus) toward fungal pathogens by strains of plant associated Bacillus amyloliquefaciens. Microb Ecol 54:134–140

    Article  PubMed  Google Scholar 

  • Diby P, Kyung SP (2013) Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors 13:13969–13977

    Article  Google Scholar 

  • Dickschat JS, Wenzel SC, Bode HB, Müller R, Schulz S (2004) Biosynthesis of volatiles by the Myxobacterium Myxococcus xanthus. Chem Biol Chem 5:778–787

    Article  CAS  Google Scholar 

  • Dickschat JS, Martens R, Brinkhoff T, Simon M, Schulz S (2005) Volatiles releases by Streptomyces species isolated from the North Sea. Chem Biodivers 2:837–865

    Article  CAS  PubMed  Google Scholar 

  • Dunlap CA, Kim SJ, Kwon SW (2015) Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. Int J Syst Evol Microbiol 65:2104–2109

    Article  CAS  PubMed  Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28:719–725

    Article  CAS  Google Scholar 

  • Elshafie HS, Camele I, Racioppi R, Scrano L, Iacobellis NS, Bufo SA (2012) In vitro antifungal activity of Burkholderia gladioli pv. agaricicola against some phytopathogenic fungi. Int J Mol Sci 13:16291–16302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farag MA, Ryu CM, Summer LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    Article  CAS  PubMed  Google Scholar 

  • Fernando WG, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Fraatz MA, Zom H (2010) Fungal flavors. In: Esser K, Hofrichter M (eds) The mycota X: industrial applications. Springer, Heilderberg, pp 249–268

    Google Scholar 

  • Garbeva P, Hordijk C, Gerards S, de Boer W (2014a) Volatile-mediated interactions between phylogenetically different soil bacteria. Front Microbiol 5:289

    Article  PubMed  PubMed Central  Google Scholar 

  • Garbeva P, Hordijk C, Gerards S, de Boer W (2014b) Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol 87:639–649

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Vaghela H, Parmar S, Dhandhukia P, Thakker JN (2013) Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. J Plant Interact 8:281–290

    Article  CAS  Google Scholar 

  • Gupta AM, Gopal KVB, Tilak R (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862

    CAS  PubMed  Google Scholar 

  • Gutierrez-Luna FM, Lopez-Bucio J, Tamirano-Hernandez J, Valencia-Cantero E, de la Cruz HR, Macias-Rodriguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83

    Article  CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hol W, Bezemer T, Biere A (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front Plant Sci 4:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Huang JW, Saidon G, Erickson R (1997) Effect of allyl alcohol and fermented agricultural wastes on carpogenic germination of sclerotia of Sclerotinia sclerotiorum and colonization of Trichoderma spp. Can J Plant Pathol 9:43–46

    Article  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana As a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26

    Article  Google Scholar 

  • Inbar J, Chet I (1995) The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum. Microbiology 141:2823–2829

    Article  CAS  PubMed  Google Scholar 

  • Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Kaiser R (2006) Flowers and fungi use scents to mimic each other. Science 311:806–807

    Article  CAS  PubMed  Google Scholar 

  • Kevin VJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  Google Scholar 

  • Khan AL, Waqas M, Hussain J, Al-Harrasi A, Al-Rawahi A, Al-Hosni K (2014) Endophytes Aspergillus caespitosus LK12 and Phoma sp. LK13 of Moringa peregrina produce gibberellins and improve rice plant growth. J Plant Interact 9:731–737

    Article  CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2007) Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J Gen Plant Pathol 73:35–37

    Article  CAS  Google Scholar 

  • Korolev N, David DR, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma -induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. Biol Control 53:667–683

    CAS  Google Scholar 

  • Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  CAS  PubMed  Google Scholar 

  • Kramer R, Abraham WR (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37

    Article  CAS  Google Scholar 

  • Lee SO, Kim HY, Choi GJ, Lee HB, Jang KS, Choi YH, Kim JC (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J Appl Microbiol 106:1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Farag MA, Park HB, Kloepper JW, Lee SH, Ryu CM (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 7:e48744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Zhang X, Jun RAO, Huanwen CHEN (2008) Microbial volatile organic compounds: generation pathways and mass spectrometric detection. J Chin Biotechnol 28:124–133

    Google Scholar 

  • MacDonald EMS, Powell GK, Regier DA, Glass NL, Roberto F, Kosuge T, Morris RO (1986) Secretion of zeatin, ribosylzeatin, and “ribosyl-1”-methylzeatin by Pseudomonas savastanoi. Plant Physiol 82:742–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380

    Article  CAS  PubMed  Google Scholar 

  • Meldau DG, Meldau S, Hoang LH, Underberg S, Wünsche H, Baldwin IT (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier J, Jimenez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol 31:1–8

    Article  Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854

    Article  CAS  PubMed  Google Scholar 

  • Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, Hyakumachi M (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 9:e86882

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Castro R, Martinez-Trujillo M, Lopez-Bucio J (2008) N-acyl-Lhomoserine lactones: a class of bacterial quorum-sensing signals alter postembryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo H, Macias-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YS, Dutta S, Ann M, Raaijmakers JM, Park K (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun 461:361–365

    Article  CAS  PubMed  Google Scholar 

  • Piechulla B, Degenhardt J (2014) The emerging importance of microbial volatile organic compounds. Plant Cell Environ 37:811–812

    Article  CAS  PubMed  Google Scholar 

  • Raza W, Faheem M, Yousaf S, Rajer FU, Yamin M (2013) Volatile and nonvolatile antifungal compounds produced by Trichoderma harzianum SQR-T037 suppressed the growth of Fusarium oxysporum f. sp. niveum. Sci Lett 1:21–24

    Google Scholar 

  • Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Pytochem Rev 7:89–123

    Article  CAS  Google Scholar 

  • Romoli R, Papaleo M, De Pascale D, Tutino M, Michaud L, LoGiudice A (2014) GC-MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas sp TB41. Metabolomics 10:42–51

    Article  CAS  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Pare PW (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3:130–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, FaragMA HCH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiestl FP, Steinebrunner F, Schulz C, von Reuss S, Francke W, Weymuth C (2006) Evolution of ‘pollinator’ – attracting signals in fungi. Biol Lett 2:401–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleibinger H, Laussmann D, Bornehag CG, Eis D, Rueden H (2008) Microbial volatile organic compounds in the air of moldy and mold-free indoor environments. Indoor Air 18:113–124

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699

    Article  CAS  PubMed  Google Scholar 

  • Stotzky G, Schenk S (1976) Volatile organic compounds and microorganisms. Crit Rev Microbiol 4:333–382

    Article  CAS  Google Scholar 

  • Strobel G (2006) Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33:514–522

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus a novel endophytic fungus. Microbiology 147:2943–2950

    Article  CAS  PubMed  Google Scholar 

  • Thorn RMS, Greenman J (2012) Microbial volatile compounds in health and disease conditions. J Breath Res 6:024001

    Article  PubMed  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito MA (2008) Novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    Article  CAS  PubMed  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Anton Leeuwenhoek 81:357–364

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interaction and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Zhang H, Pare PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zhang R, Wang D, Qiu M, Feng H, Zhang N, Shen Q (2014) Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation. Appl Environ Microbiol 80:2941–2950

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamagiwa Y, Inagaki Y, Ichinose Y, Toyoda K, Hyakumachi M, Shiraishi T (2011) Talaromyces wortmannii FS2 emits β-caryophyllene, which promotes plant growth and induces resistance. J Gen Plant Pathol 77:336–341

    Article  CAS  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  CAS  PubMed  Google Scholar 

  • Zou CS, Mo MH, Gu YQ, Zhou JP, Zhang KQ (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Reddy, B.N., Hindumathi, A. (2017). Potential of Microbial Volatile Organic Compounds for Crop Protection Against Phytopathogenic Fungi. In: Choudhary, D., Sharma, A., Agarwal, P., Varma, A., Tuteja, N. (eds) Volatiles and Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-5553-9_14

Download citation

Publish with us

Policies and ethics