Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 453))

Abstract

An electrical network model is designed to represent the central dogma of molecular biology and simulate the response to study the behaviors of bacteria gene E. coli. The transcription and translation processes of a biological system are represented by differential equations. These equations are mapped into electrical domain, and an equivalent electrical circuit is realized. The electrical response of circuit is simulated in SPICE domain, and result shows the structural and repressor protein behaves like a toggle switch which truly matches with biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J. Hasty, D. McMillen, Engineered gene circuits. Nature 224–230 (2002). doi:10.1038/nature01257

  2. M. Kaern, W.J. Blake, J.J. Collins, The engineering of gene regulatory networks. Annu. Rev. Biomed. Eng. 179–206 (2003). doi:10.1146/annurev.bioeng.5.040202.121553

  3. F. Jacob, J. Monod, On the regulations of gene activity, in Symposium on Cellular Regulatory Mechanisms (Cold Spring Harbor laboratory, New York, 1961), pp 193–211

    Google Scholar 

  4. A. Becskei, Luis Serrano, Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000)

    Article  Google Scholar 

  5. M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  6. S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)

    Google Scholar 

  7. N.E. Buchler, U. Gerland, T. Hwa, Nonlinear protein degradation and the function of genetic circuits. Proc. Natl. Acad. Sci. U S A. 102, 9559–9564 (2005)

    Google Scholar 

  8. H. De Jong, Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 67–103 (2002)

    Google Scholar 

  9. H. Kim, E. Gelenbe, Stochastic gene expression modeling with hill function for switch-like gene responses. IEEE Transac. Comput. Biol. Bioinform. 9(X), 973–979 (2012)

    Google Scholar 

  10. H.H. McAdams, A. Arkin, Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci., USA 94, 814–819 (1997)

    Article  Google Scholar 

  11. T. Chen, H.L. He, Modeling gene expression with differential equations, in Pacific Symposium of Biocomputing (1999), pp. 17–28

    Google Scholar 

  12. H.H. McAdams, A. Arkin, Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. 94, 814–819 (1997)

    Google Scholar 

  13. I. Shmulevich et al., Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274 (2002)

    Article  Google Scholar 

  14. C. Ferreira, in Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, vol 21, (Springer, 2006)

    Google Scholar 

  15. G. Bernot, et al., Modeling and analysis of gene regulatory networks, in Modeling in Computational Biology and Biomedicine, (Springer, Berlin, Heidelberg, 2013), pp. 47–80

    Google Scholar 

  16. S. Paul, D.A. Baxter, J.H. Byrne, Mathematical modeling of gene networks. Neuron 26, 567–580 (2000)

    Article  Google Scholar 

  17. N.R. Zabet, A.N.W. Hone, D.F. Chu, Design principles of transcriptional logic circuits. ALIFE, (2010), pp. 186–194

    Google Scholar 

  18. J.L. Hargrove, F.H. Schmidt, The role of mRNA and protein stability in gene expression. FASEB J. 3, 2360–2370 (1989)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank DST, Science and Engineering Research Board (SERB/F/4504/2013–2014), Govt. of India for funding support of research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Barman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dutta, M., Barman, S. (2018). Electrical Equivalent Model for Gene Regulatory System. In: Nath, V. (eds) Proceedings of the International Conference on Microelectronics, Computing & Communication Systems. Lecture Notes in Electrical Engineering, vol 453. Springer, Singapore. https://doi.org/10.1007/978-981-10-5565-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5565-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5564-5

  • Online ISBN: 978-981-10-5565-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics