Skip to main content

Jamming Suppression

  • Chapter
  • First Online:
Adaptive Interference Mitigation in GNSS

Part of the book series: Navigation: Science and Technology ((NASTECH))

Abstract

The vulnerabilities of GNSS systems expose them to impacts from various intentional and unintentional interferences. Of these various interferences, jamming is the most common type, which mainly includes narrowband jamming and wideband jamming. Even though GNSS adopts spread spectrum technology so that it has certain capability of interference mitigation, this capability is constrained by spreading gain. Usually the power of jamming is much larger than the power of the GNSS signal. Under these conditions, the jamming power, even after de-spreading, is still much larger than the signal power, and consequently a receiver cannot acquire GNSS signal.

The original version of this chapter was revised: For detailed information please see Erratum. The erratum to this chapter is available at 10.1007/978-981-10-5571-3_7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Upton DM, Upadhyay TN, Marchese J. Commercial-off-the-shelf (COTS) GPS interference canceller and test results. In: ION Navigation conference. 1998. p. 319–25.

    Google Scholar 

  2. Dimos G, Upadhyay T, Jenkins T. Low-cost solution to narrowband GPS interference problem. Process IEEE Natl Conf Aerosp Electron. 1995;1:45–153.

    Google Scholar 

  3. Rifkin R, Vaccaro JJ. Comparisons of narrowband adaptive filter technologies for GPS. MITRE technique report. 2000. p. 125–31.

    Google Scholar 

  4. Milstein LB. Interference rejection technique in spread spectrum communications. Process IEEE. 1988;76(6):657–71.

    Google Scholar 

  5. Ma W, Mao W, Chang F. Design of adaptive all-pass based notch filter for narrowband anti-jamming GPS system. In: Proceedings of 2005 international symposium on intelligent signal processing and communication system, Hong Kong. 2003. p. 305–8.

    Google Scholar 

  6. Soderstrand MA, Johnson TG, Strandberg RH, et al. Suppression of multiple narrow-band interference using real-time adaptive notch filters. IEEE Trans Circuits and Syst II: Analog Digit Signal Process. 1997;44(3):217–25.

    Google Scholar 

  7. Landry RJ, Calmettes V, Bousquet M. Impact of interference on a generic GPS receiver and assessment of mitigation techniques. In: IEEE 5th international symposium on spread spectrum techniques and applications. 1998. vol 1. p. 87–91.

    Google Scholar 

  8. Zoltowski MD, Haber F. Advanced adaptive null steering concepts for GPS. In: Processing MILCOM conference, universal communications, San Diego, CA. 1995. vol 3. p. 1214–8.

    Google Scholar 

  9. Gecan A, Zoltowski MD. Power minimization technique for GPS null steering antennas. In: Institute of Navigation conference, Palm Springs, CA. 1995.vol 12, no 1, p. 13–5.

    Google Scholar 

  10. Wang WY, Du QR, Wu RB et al. Interference suppression with flat gain constraint for satellite navigation systems. IET Radar Sonar Navig. 2015;9(7):852–6.

    Google Scholar 

  11. Moelker DJ, Pol EV, Yeheskel BN. Adaptive antenna arrays for interference cancellation in GPS and GLONASS receivers. In: Proceeding of the IEEE position location and navigation symposium. 1996. p. 191–8.

    Google Scholar 

  12. Jay RS. Interference mitigation approaches for the global positioning system. Lincoln Lab J. 2003;14(2):168–80.

    Google Scholar 

  13. Kaplan ED, Hegarty CJ. Understanding GPS principles and applications, 2nd ed. Artech House; 2006.

    Google Scholar 

  14. Sun W, Amin MG. A self-coherence anti-jamming GPS receiver. IEEE Trans Signal Process. 2005;53(10):3910–5.

    Google Scholar 

  15. Li P, Lu D, Wu R, et al. Adaptive anti-jamming algorithm based on the characteristics of the GPS signal. In: Proceedings of 2008 international symposium on intelligent signal processing and communication systems. 2008. p. 181–4.

    Google Scholar 

  16. Fante RL, Vaccaro JJ. Wideband cancellation of interference in a GPS receiver array. IEEE Trans Aerosp Electron Syst. 2000;36(2):549–64.

    Google Scholar 

  17. Myrick WL, Goldstein JS, Zoltowski MD. Anti-jam space-time preprocessor for GPS based on multistage nested wiener filter. IEEE Mil Commun (Atlantic NJ). 1999;1:675–81.

    Google Scholar 

  18. Lu D, Wu R. Global positioning system anti-jamming algorithm based on period repetitive CLEAN. IET Radar Sonar Navig. 2013;7(2):164–9.

    Google Scholar 

  19. Poor HV, Rusch LA. Narrowband interference suppression in spread spectrum CDMA. IEEE Pers Commun Mag. 1994;3:14–27.

    Google Scholar 

  20. Haykin S. Adaptive filter theory. 4th ed. New Jersey: Prentice Hall; 2002.

    Google Scholar 

  21. Young JA, Lehnert J, Lehnert S. Analysis of DFT-based frequency excision algorithm for direct sequence spread spectrum communications. IEEE Trans Commun. 1998;46:1076–87.

    Google Scholar 

  22. Capozza PT, Holland BJ, Hopkinson TM, et al. A single-chip narrow-band frequency-domain excisor for a global positioning system (GPS) receiver. IEEE J Solid-State Circuits. 2000;35(3):51–5.

    Google Scholar 

  23. Hlawatsch F, Boudreaux-Bartels GF. Linear and quadratic time-frequency signal representations. IEEE Signal Process. 1992;9(2):21–67.

    Google Scholar 

  24. Badke B, Spanias AS. Partial band interference excision for GPS using frequency-domain exponents. In: Proceedings of the 2002 IEEE international conference on acoustic, speech, and signal processing. 2002. vol 4. p. 3936–9.

    Google Scholar 

  25. Ouyang X, Amin MG. Short-time fourier transform receiver for nonstationary interference excision in direct sequence spread spectrum communications. IEEE Trans Signal Process. 1988;184–213.

    Google Scholar 

  26. Zhao L, Amin MG, Lindsey AR. Subspace projection techniques for anti-FM jamming GPS receivers. IEEE SSAP; 2000. p. 529–33.

    Google Scholar 

  27. Zhang Y, Amin MG, Lindsey AR. Anti-jamming GPS receivers based on bilinear signal distributions. In: Proceedings of the MILCOM conference, universal Communications. 2001. vol 2. p. 1070–4.

    Google Scholar 

  28. Carlson BD. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans Aerosp Electron Syst. 1988;24(4):397–401.

    Google Scholar 

  29. Misra, Pratap. Global positioning system: signals, measurements, and performance. Ganga-Jamuna Press; 2006.

    Google Scholar 

  30. Agee BG, Schell SV, Gardner WA. Spectral self-coherence restoral: a new approach to blind adaptive signal extraction using antenna arrays. Proc IEEE. 1990;78(4):753–67.

    Google Scholar 

  31. Amin MG, Sun W. A novel interference suppression scheme for global navigation satellite systems using antenna array. IEEE J Sel Areas Commun. 2005;23(5):999–1012.

    Google Scholar 

  32. Gershman AB, Nickel U, Bohme JF. Adaptive beamforming algorithms with robustness against jammer motion. IEEE Trans Signal Process. 1997;45(7):1878–85.

    Google Scholar 

  33. Shmidt RO. Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag. 1986;34(3):276–80.

    Google Scholar 

  34. Roy R, Paulraj A, Kailath T. ESPRIT—a subspace rotation approach to estimation of parameter of cissoids in noise. IEEE Trans Acoust Speech Signal Process. 1986;34:1340–2.

    Google Scholar 

  35. Pickholtz RL, Schilling DL, Milstein LB. Theory of spread-spectrum communications: a tutorial. IEEE Trans Commun. 1982;30(5):855–84.

    Google Scholar 

  36. Hogbom JA. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl Ser. 1974;15:417–26.

    Google Scholar 

  37. Gough PT. A fast spectral estimation algorithm based on the FFT. IEEE Trans Signal Process. 1994;42(6):1317–22.

    Google Scholar 

  38. Tsao J, Steinberg BD. Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique. IEEE Trans Antennas Propag. 1988;36(4):543–56.

    Google Scholar 

  39. Li J, Stioica P. Efficient mixed-spectrum estimation with applications to target feature extraction. IEEE Trans Signal Process. 1996;44(2):281–95.

    Google Scholar 

  40. Li J, Zheng D, Stoica P. Angle and waveform estimation via RELAX. IEEE Trans Aerosp Electron Syst. 1997;33(3):1077–87.

    Google Scholar 

  41. Liu Z, Li J. Implementation of the RELAX algorithm. IEEE Trans Aerosp Electron Syst. 1998;34(2):657–64.

    Google Scholar 

  42. Klemm R. Adaptive airborne MTI: an auxiliary channel approach. IEE Proc Commun Radar Signal Process. 1987;134(3):269–76.

    Google Scholar 

  43. Rong Z. Simulations of adaptive array algorithm for CDMA system. M.S. thesis. Blacksburg: Virginia Tech; 1996.

    Google Scholar 

  44. Rong Z, Rappaport TS. Simulation of multitarget adaptive algorithms for wireless CDMA systems. In: Proceeding of IEEE vehicular technology conference. 1997. p. 1–5.

    Google Scholar 

  45. Thanh VD, Hung NL. New adaptive beamforming algorithms for smart antennas in DS-CDMA mobile communication systems. In: 2004 3th international conference on computational electromagnetics and its applications proceedings. 2004. p. 165–8.

    Google Scholar 

  46. Du Z, Gong P, Wu W. Block based RLS de-spread re-spread multitarget array: algorithm and performance. In: Proceeding of IEEE vehicular technology conference. 2001. p. 190–3.

    Google Scholar 

  47. Wu R, Bao Z. Array pattern distortion and remedies in space-time adaptive processing for airborne radar. IEEE Trans Antennas Propag. 1998;46(7):963–70.

    Google Scholar 

  48. Brennan LE, Mallett JD, Reed IS. Adaptive arrays in airborne MTI radar. IEEE Trans Antennas Propag. 1976;24(5):607–15.

    Google Scholar 

  49. Reed IS, Mallett JD, Brennan LE. Rapid convergences rate in adaptive arrays. IEEE Trans Aerosp Electron Syst. 1974;10(6):853–63.

    Google Scholar 

  50. Wang H, Cai LJ. On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Trans Aerosp Electron Syst. 1994;30(3):660–9.

    Google Scholar 

  51. Wang H. An overview of space-time adaptive processing for airborne radars. In: CIE international conference of radar. 1996. p. 789–94.

    Google Scholar 

  52. Fante RL, Vaccaro JJ. Cancellation of jammers and jammer multipath in a GPS receiver. IEEE Aerosp Electron Syst Mag. 1998;13(11):25–8.

    Google Scholar 

  53. Fante RL, Vaccaro JJ. Evaluation of adaptive space-time-polarization cancellation of broadband interference. In: IEEE position location and navigation symposium. 2002. p. 1–3.

    Google Scholar 

  54. David S. Navigation accuracy and interference reject for GPS adaptive antenna arrays. Doctor degree thesis. Stanford University; 2007.

    Google Scholar 

  55. Fante RL, Torres JA. Cancellation of diffuse jammer multipath by airborne adaptive radar. IEEE Trans Aerosp Electron Syst. 1995;31(2):805–20.

    Google Scholar 

  56. Tufts DW, Kumaresan R, Kirsteins I. Data adaptive signal estimation by signal value decomposition of a data matrix. Proc IEEE. 1982;70(6):684–5.

    Google Scholar 

  57. Goldstein JS, Reed IS. Redueed-rank adaptive filtering. IEEE Trans Signal Proeess. 1997;45(2):492–6.

    Google Scholar 

  58. Goldstein JS, Reed IS, Seharf LL. A multistage representation of the wiener filter based on orthogonal projections. IEEE Trans Inf Theory. 1998;44(7):2943–59.

    Google Scholar 

  59. Honig ML, Xiao WM. Performance of reduced-rank linear interference suppression. IEEE Trans Inf Theory. 2001;47(5):1928–46.

    Google Scholar 

  60. Ricks DC, Goldstein JS. Efficient architectures for implementing adaptive algorithms. In: Proceedings of the 2000 antenna applications symposium. USA: Monticello. p. 29–41.

    Google Scholar 

  61. Hatke GF. Adaptive array processing for wideband nulling in GPS systems. Signals, systems & computers. In: Conference record of the thirty-second Asilomar conference. 1998. p. 1332–6.

    Google Scholar 

  62. Wu R, Xu R, Lu D, et al. STAP equalization technique based on homomorphic filtering in GPS. In: 2010 IEEE international symposium on phased array systems and technology. 2010. p. 841–5.

    Google Scholar 

  63. Vaseghi SV. Advanced digital signal processing and noise reduction. 3rd ed. USA: Wliey; 2006. p. 27–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renbiao Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wu, R., Wang, W., Lu, D., Wang, L., Jia, Q. (2018). Jamming Suppression. In: Adaptive Interference Mitigation in GNSS. Navigation: Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5571-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5571-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5570-6

  • Online ISBN: 978-981-10-5571-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics