Skip to main content

Mining Bacterial Diversity for Biosurfactants

  • Chapter
  • First Online:
Mining of Microbial Wealth and MetaGenomics

Abstract

A wide range of compounds (biosurfactants) is synthesized by microorganisms especially bacteria. Microbial surfactants are amphiphilic compounds that exhibit surface activity. There is increasing interest in the production and utilization of biosurfactants for several reasons such as environmentally friendly because they are low toxic and biodegradable. Apart from that, biosurfactants carry potential advantages over chemical surfactants due to their unique structures. They have shown great potential applications in various industries, such as medicine, cosmetics, pharmaceutical, food processing and oil enhanced recovery, agriculture, and environmental protection. There are different groups of biosurfactant produced by diverse bacteria. The main focus of this chapter is to give an overview on structure and function of different groups of bacterial surfactants and their application in bioremediation and petroleum oil degradation as well as their role in biomedical as therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouseoud M, Yataghene A, Amrane A, Maachi R (2010) Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens. J Hazard Mater 180:131–136. doi:10.1016/j.jhazmat2010.04.003

    Article  CAS  PubMed  Google Scholar 

  • Abriouel H, Franz CM, Ben Omar N, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232. doi:10.1111/j.1574-6976.2010.00244.x

    Article  CAS  PubMed  Google Scholar 

  • Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ, Al-Makhmari HS, Al-Sulaimani HS (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeter Biodegr 81:141–146. doi:10.1016/j.ibiod.2012.01.006

    Article  CAS  Google Scholar 

  • Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B (2014) Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf B Biointerfaces 114:324–333. doi:10.1016/j.colsurfb.2013.09.022

    Article  CAS  PubMed  Google Scholar 

  • Angelini TE, Roper M, Kolter R, Weitz DA, Brenner MP (2009) Bacillus subtilis spreads by surfing on the waves of surfactant. Proc Natl Acad Sci U S A 106:18109–18113. doi:10.1073/pnas.0905890106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715. doi:10.1021/es2013227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu PS, Vaidya AN, Bal AS, Kapur R, Juwarkar A, Khanna P (1996) Kinetics of biosurfactants production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotechnol Lett 18:263–268. doi:10.1007/BF00142942

    CAS  Google Scholar 

  • Balan SS, Kumar CG, Jayalakshmi S (2017) Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: purification, characterization and its biological evaluation. Microbiol Res 194:1–9. doi:10.1016/j.micres.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508. doi:10.1007/s002530051648

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. doi:10.1007/s00253-010-2589-0

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective, technologies and renewable substrates for biosurfactant production. Front Microbiol 5:697. doi:10.3389/fmicb.2014.00697

    Article  PubMed  PubMed Central  Google Scholar 

  • Bello XV, Rey RD, Cruz JM, Moldes AB (2012) Study of the synergistic effect of salinity, pH and temperature on the surface-active properties of bio surfactants produced by Lactobacillus pentosus. J Agric Food Chem 60:1258–1265. doi:10.1021/jf205095d

    Article  PubMed  CAS  Google Scholar 

  • Brzonkalik K, Hümmer D, Syldatk C, Neumann A (2012) Influence of pH and carbon to nitrogen ratio on mycotoxin production by Alternaria alternata in submerged cultivation. AMB Express 2:28. doi:10.1186/2191-0855-2-28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bustamante M, Duran N, Diez MC (2012) Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. Soil Sci Plant Nutr 12:667–687. doi:10.4067/S0718-95162012005000024

    Google Scholar 

  • Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529. doi:10.1007/s002530051329

    Article  CAS  PubMed  Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological immunological molecules. Curr Opin Microbiol 7:262–266. doi:10.1016/j. mib.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  • Cameotra SS, Makkar RS, Kaur J, Mehta S (2010) Synthesis of biosurfactants and their advantages to microorganisms and mankind. Adv Exp Med Biol 672:261–280. doi:10.1007/978-1-4419-5979-9_20

    Article  CAS  PubMed  Google Scholar 

  • Chen WC, Juang RS, Wei YH (2015) Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng 103:158–169. doi:10.1016/j.bej.2015.07.009

    Article  CAS  Google Scholar 

  • Clemente AR, Anazawa TA, Durrant LR (2001) Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Braz J Microbiol 32:255–260. doi:10.1590/S1517-83822001000400001

    Article  CAS  Google Scholar 

  • Cooper DG, Macdonald CR, Duff JBS, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412. doi:0099-2240/81/090408-05$02.00/0

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008a) Genetic regulation of the biosynthesis of microbial surfactants: an overview. Biotechnol Genet Eng Rev 25:165–185. doi:10.5661/bger-25-165

    Article  CAS  PubMed  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008b) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72:1229–1243. doi:10.1016/j.chemosphere.2008.05.015

    Article  CAS  PubMed  Google Scholar 

  • Das P, Mukherjee S, Sivapathasekaran C, Sen R (2010) Microbial surfactants of marine origin: potential and prospects. In: Sen R (ed) Biosurfactants. Springer, New York. ISBN: 978-1-4419-5978-2, pp 88–101. doi:10.1007/978-1-4419-5979-9_7

    Chapter  Google Scholar 

  • Das P, Yang X-P, Ma LZ (2014) Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity. Front Microbiol 5:696. doi:10.3389/fmicb.2014.00696

    PubMed  PubMed Central  Google Scholar 

  • Das M, Patowary K, Vidya R, Malipeddi H (2016) Microemulsion synthesis of silver nanoparticles using biosurfactant extracted from Pseudomonas aeruginosa MKVIT3 strain and comparison of their antimicrobial and cytotoxic activities. IET Nanobiotechnol 10(6):411–418. doi:10.1049/iet-nbt.2015.0119

    Article  PubMed  Google Scholar 

  • Dastgheib SM, Amoozegar MA, Elahi E, Asad S, Banat IM (2008) Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery. Biotechnol Lett 30:63–720. doi:10.1007/s10529-007-9530-3

    Article  CAS  Google Scholar 

  • Davila AM, Marchal R, Vandescasteele JP (1992) Kinetics and balance of fermentation free from product inhibition: sophorose lipid production by Candida bombicola. Appl Microbiol Biotechnol 38:6–11. doi:10.1007/BF00169410

    Article  CAS  Google Scholar 

  • Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94:2667–2679. doi:10.1529/biophysj.107.114090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai J, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64. doi:0146-0749/97/$04.0010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edward KP, Lepo JE, Lewis MA (2003) Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar Pollut Bull 46:1309–1316. doi:10.1016/S0025-326X(03)00238-8

    Article  CAS  Google Scholar 

  • Elazzazy AM, Abdelmoneim TS, Almaghrabi OA (2015) Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22:466–475. doi:10.1016/j.sjbs.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  • Erdem Z, Cutright TJ (2016) Biotransformation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (4,4′-DDT) on a sandy loam soil using aerobic bacterium Corynebacterium sp. Environ Earth Sci 75:1267. doi:10.1007/s12665-016-6057-8

    Article  CAS  Google Scholar 

  • Farias D, de Andrade RR, Maugeri-Filho F (2014) Kinetic modeling of ethanol production by Scheffersomyces stipitis from xylose. Appl Microbiol Biotechnol 172:361–379. doi:10.1007/s12010-013-0546-y

    CAS  Google Scholar 

  • Fauzi M, Suryatmana P (2016) Bioremediation of crude oil waste contaminated soil using petrophilic consortium and Azotobacter sp. J Degraded Mining Lands Managment 3:521–526. doi:10.15243/jdmlm.2016.032.521

    Google Scholar 

  • Fonseca RR, Silva AJ, França FPD, Cardoso VL, Sérvulo EF (2007) Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain. Appl Biochem Biotechnol 137:471–486. doi:10.1007/978-1-60327-181-3_40

    PubMed  Google Scholar 

  • Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications present status and future potentials. In: Ghista DN (ed) Biomedical science, engineering and technology. InTech, Rijeka. ISBN: 978-953-307-471-9, pp 325–370. doi:10.5772/23821

    Google Scholar 

  • Franzetti A, Tamburini E, Banat IM (2010) Application of biological surface active compounds in remediation technologies. In: Sen R (ed) Biosurfactants. Springer, New York. ISBN: 978-1-4419-5978-2, pp 121–134. doi:10.1007/978-1-4419-5979-9_7

    Chapter  Google Scholar 

  • Guo Z, Xing R, Liu S, Zhong Z, Ji X, Wang L, Li P (2007) Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydr Res 342:1329–1332. doi:10.1016/j.carres.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez T, Mulloy B, Black K, Green DH (2007a) Glycoprotein emulsifiers from two marine Halomonas species: chemical and physical characterization. J Appl Microbiol 103:1716–1727. doi:10.1111/j.1365-2672.2007.03407.x

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez T, Mulloy B, Bavington C, Black K, Green DH (2007b) Partial purification and chemical characterization of a glycoprotein (putative hydrocolloid) emulsifier produced by a marine bacterium Antarctobacter. Appl Microbiol Biotechnol 76:1017–1026. doi:10.1007/s00253-007-1091-9

    Article  PubMed  CAS  Google Scholar 

  • Henkel M, Muller MM, Kugler JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47:1207–1226. doi:10.1016/j.procbio.2012.04.018

    Article  CAS  Google Scholar 

  • Hu QW, Chu X, Xiao M, Li CT, Yan ZF, Hozzein WN, Kim CJ, Zhi XY, Li WJ (2016) Arthrobacter deserti sp. nov. isolated from a desert soil sample. Int J Syst Evol Microbiol 66:2035–2040. doi:10.1099/ijsem.0.000986

    Article  CAS  PubMed  Google Scholar 

  • Ismail W, Al-Rowaihi IS, Al-Humam AA, Hamza RY, El Nayal AM, Bououdina M (2013) Characterization of a lipopeptide biosurfactant produced by a crude-oil-emulsifying Bacillus sp. I-15. Int Biodeter Biodegr 84:168–178. doi:10.1016/j.ibiod.2012.04.017

    Article  CAS  Google Scholar 

  • Jain RM, Mody K, Joshi N, Mishra A, Jha B (2013) Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium, Klebsiella sp: evaluation of different carbon sources. Colloids Surf B Biointerfaces 108:199–204. doi:10.1016/j.colsurfb.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman M, Seetharaman J (2003) Phsicochemical analysis of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio alginolyticus. Process Biochem 38:841–847. doi:10.1016/S0032-9592(02)00021-3

    Article  Google Scholar 

  • Joshi SJ, Al-Wahaibi YM, Al-Bahry SN, Elshafie AE, Al-Bemani AS, Al-Bahri A, Al-Mandhari MS (2016) Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Front Microbiol 7:1853. doi:10.3389/fmicb.2016.01853

    PubMed  PubMed Central  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, ElGhachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R, Rosenkranz F (eds) Biodegradation life of science. Intech, Rijeka. ISBN: 978-953-51-1154-2, pp 289–320. doi:10.5772/56194

    Google Scholar 

  • Joy S, Butalia T, Sharma S, Rahman PKSM (2017) Biosurfactant producing bacteria from hydrocarbon contaminated environment. In: Heimann K, Karthikeyan OP, Muthu SS (eds) Biodegradation and bioconversion of hydrocarbons. Springer, Singapore. ISBN: 978-981-10-0199-4, pp 259–305. doi:10.1007/978-981-10-020-4_8

    Chapter  Google Scholar 

  • Karanth NGT, Deo G, Veenanadig NK (1999) Microbial production of biosurfactants and their importance. Curr Sci 77:116–126

    CAS  Google Scholar 

  • Karhu M, Kaakinen J, Kuokkanen T, Rämö J (2009) Biodegradation of light fuel oils in water and soil as determined by the manometric respirometric method. Water Air Soil Pollut 197:3–14. doi:10.1007/s11270-008-9752-6

    Article  CAS  Google Scholar 

  • Kataria R, Ruhal R (2014) Microbiological metabolism under chemical stress. In: Das S (ed) Microbial biodegradation and bioremediation. Elsevier, Amsterdam. ISBN: 9780128004821, pp 499–511. doi:10.1016/B978-0-12-800021-2.00021-2

    Google Scholar 

  • Kim S, Kim JY, Kim SH, Bae HJ, Yi H, Yoon SH, Koo BS, Kwon M, Cho JY, Lee CH, Hong S (2007) Surfactin from Bacillus subtilis displays antiproliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581:865–871. doi:10.1016/j.febslet.2007.01.059

    Article  CAS  PubMed  Google Scholar 

  • Lang S (2000) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20. doi:10.1016/S1359-0294(02)00007-9

    Article  Google Scholar 

  • Lau EV, Gan S, Ng HK, Poh PE (2014) Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environ Pollut 184:640–649. doi:10.1016/j.envpol.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  • Lin SC, Sharma MM, Georgiou G (1993) Production and deactivation of biosurfactant by Bacillus licheniformis JF-2. Biotechnol Prog 9:138–145. doi:10.1021/bp0002 0a004

    Article  CAS  Google Scholar 

  • Liu XH, Yang SZ, Mu BZ (2008) Isolation and characterization of a C12-lipo peptide produced by Bacillus subtilis HSO 121. J Pept Sci 14:864–875. doi:10.1002/psc.1017

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Kong Q, Qin C, Chen Y, Chen Y, Lv R, Zhou G (2016) Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC-ESI-MS/MS. AMB Express 6:79. doi:10.1186/s13568-016-0252-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipid: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633. doi:10.1007/s002530000443

    Article  CAS  PubMed  Google Scholar 

  • Makkar SR, Swaranjit SC, Ibrahim MB (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5. doi:10.1186/2191-0855-1-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez DS, Faria AF, Berni E, Filho AGS, Almeida G, Oliveira ACGMJ, Durrant LR, Umbuzeiro GA, Alves OL (2014) Exploring the use of biosurfactants from Bacillus subtilis in bionanotechnology: a potential dispersing agent for carbon nanotube ecotoxicological studies. Process Biochem 49:1162–1168. doi:10.1016/j.procbio.2014.04.006

    Article  CAS  Google Scholar 

  • Martínez-Checa F, Toledo FL, Vilchez R, Quesada E, Calvo C (2002) Yield production, chemical composition and functional properties of emulsifier H28 synthesized by Halomonas eurihalina strain H-28 in media containing various hydrocarbons. Appl Microbial Biotechnol 58:358–363. doi:10.1007/s00253-001-0903-6

    Article  CAS  Google Scholar 

  • Mnif I, Mnif S, Sahnoun R, Maktouf S, Ellouze-Chaabouni YAS, Ghribi D (2015) Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ Sci Pollut Res Int 22:14852–14861. doi:10.1007/s11356-015-4488-5

    Article  CAS  PubMed  Google Scholar 

  • Mnif I, Sahnoun R, Ellouz-Chaabouni S, Ghribi D (2017) Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ Prot 109:72–81. doi:10.1016/j.psep.2017.02.002

    Article  CAS  Google Scholar 

  • Moldes AB, Paradelo R, Vecino X, Cruz JM, Gudina E, Rodrigues L, Teixeria JA, Domínguez JM, Barral MT (2013) Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil. Biomed Res Int 2013:1–26. doi:10.1155/2013/961842

    Google Scholar 

  • Montagnolli RN, Lopes PRM, Bidoia ED (2015) Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environ Monit Assess 187:4116. doi:10.1007/s10661-014-4116-8

    Article  PubMed  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut J 133:183–198. doi:10.1016/j.envpol.2004.06.009

    Article  CAS  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94:736–747

    CAS  Google Scholar 

  • Nguyen TT, Sabatini DA (2011) Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications. Int Mol Sci 12:1232–1244. doi:10.3390/ijms12021232

    Article  CAS  Google Scholar 

  • Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by polycyclic aromatic hydrocarbon degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28:635–643. doi:10.1016/j.biotechadv.2010.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitschke M, Pastore GM (2004) Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Appl Biochem Biotechnol 112:163–172. doi:10.1385/ABAB:112:3:163

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341. doi:10.1016/j.biortech.2005.02.044

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Costa SG, Haddad R, Gonçalves LAG, Eberlin MN, Contiero J (2005) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Prog 21:1562–1566. doi:10.1021/bp050198x

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DWF, Franca IWL, Felix AKN, Martins JJL, Giro MEA, Melo VMM (2013) Kinetic study of biosurfactants production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Sur Biointerfaces 101:34–43. doi:10.1016/j.colsurfb.2012.06.011

    Article  CAS  Google Scholar 

  • Panjiar N, Gabrani R, Sarethy IP (2013) Diversity of biosurfactant producing Streptomyces sp. isolates from hydrocarbon-contaminated soil. Int Pharma Biol Sci 4:524–535

    Google Scholar 

  • Parthipan P, Preetham E, Machuca LL, Pattanathu KSMR, Kadarkarai M, Aruliah R (2017) Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front Microbiol 8:193. doi:10.3389/fmicb.2017.00193

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil J R, Chopade B A (2003) Bioemulsifier production by Acinetobacter strains isolated from healthy human skin. US Patent No. US 2004/0138429 A1

    Google Scholar 

  • Patowary K, Saikia RR, Kalita MC, Deka S (2014) Degradation of polyaromatic hydrocarbons employing biosurfactant producing Bacillus pumilus KS2. Ann Microbiol 65:225–234. doi:10.1007/s13213-014-0854-7

    Article  CAS  Google Scholar 

  • Perez KJ, Viana JD, Lopes FC, Pereira JQ, Dos Santos DM, Oliveira JS, Velho RV, Crispim SM, Nicoli JR, Brandelli A, Nardi RM (2017) Bacillus sp. isolated from Puba as a source of biosurfactants and antimicrobial lipopeptides. Front Microbiol 8:61. doi:10.3389/fmicb.2017.00061

    PubMed  PubMed Central  Google Scholar 

  • Perez-Ameneiro M, Vecino X, Cruz JM, Moldes AB (2015) Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite. Carbohydr Polym 131:186–196. doi:10.1016/j.carbpol.2015.05.075

    Article  CAS  PubMed  Google Scholar 

  • Perfumo A, Smyth TJP, Marchant R, Banat IM (2010) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin. ISBN: 978-3-540-77584-3, pp 1501–1512. doi:10.1007/978-3-540-77587-4_103

    Chapter  Google Scholar 

  • Persson A, Osterberg E, Dostalek M (1998) Biosurfactant production from Pseudomonas fluorescens 378: growth and product characteristic. Appl Microbiol Biotechnol 29:1–4. doi:10.1007/BF00258342

    Article  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 54:553–563. doi:10.1007/s0025300514

    Article  Google Scholar 

  • Pi Y, Bao M, Liu Y, Lu T, He R (2017) The contribution of chemical dispersants and biosurfactants on crude oil biodegradation by Pseudomonas sp. LSH-7. J Clean Prod 153:74–82. doi:10.1016/j.jclepro.2017.03.120

    Article  CAS  Google Scholar 

  • Plaza GA, Chojniak J, Banat IM (2014) Biosurfactnat mediated biosynthesis of selected metallic nanoparticles. Inter Mol Sci 15:1372–13737. doi:10.3390/ijms150813720

    Google Scholar 

  • Putra MD, Abasaeed AE, Atiyeh HK, Al-Zahrani SM, Gaily MH, Sulieman AK (2015) Kinetic modeling and enhanced production of fructose and ethanol from date fruit extract. Chem Eng Commun 202:1618–1627. doi:10.1080/00986445.2014.968711

    Article  CAS  Google Scholar 

  • Radzuan MN, Banat IM, Winterburn J (2017) Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Bioresour Technol 225:99–105. doi:10.1016/j.biortech.2016.11.052

    Article  CAS  PubMed  Google Scholar 

  • Rahman KSM, Randhawa KKS (2015) Editorial: microbiotechnology based surfactants and their applications. Front Microbiol 6:1344. doi:10.3389/fmicb.2015.01344

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramasamy S, Arumugam A, Chandran P (2017) Optimization of Enterobacter cloacae (KU923381) for diesel oil degradation using response surface methodology (RSM). J Microbiol 55:104. doi:10.1007/s12275-017-6265-2

    Article  CAS  PubMed  Google Scholar 

  • Raza ZA, Khan MS, Khalida ZM (2007) Evaluation of distant carbon sources in biosurfactant production by a gamma ray-induced Pseudomonas putida mutant. Process Biochem 42:686–692. doi:10.1016/j.procbio.2006.10.001

    Article  CAS  Google Scholar 

  • Reis RS, da Rocha SLG, Chapeaurouge DA, Domont GB, Santa Anna LMM, Freire DMG, Perales J (2010) Effects of carbon and nitrogen sources on the proteome of Pseudomonas aeruginosa PA1 during rhamnolipid production. Process Biochem 45:1504–1510. doi:10.1016/j.procbio.2010.05.032

    Article  CAS  Google Scholar 

  • Rocha MV, Souza MCM, Benedicto SC, Bezerra MS, Macedo GR, Pinto GAS, Goncalves LRB (2007) Production of biosurfactant by Pseudomonas aeruginosa grown on cashew apple juice. Appl Biochem Biotechnol 137-140:185–194

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Banat IM, Teixeria J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618. doi:10.1093/jac/dkl024

    Article  CAS  PubMed  Google Scholar 

  • Romera D, Vincente AD, Rakotoaly RH, Dufour SE, Veening JW, Arre Bola E, Cazorla FM, Kuipers OP, Paquot M, Garcia AP (2007) The Iturin and Fengycin family of lipopeptides are key factor in antagonism of Bacillus subtilis towards Podosphaera fusca. Mol Plant-Microbe Interact 20:430–440. doi:10.1094/MPMI-20-4-0430

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactant and oil remediation. Curr Opin Biotechnol 13:249–252. doi:10.1016/S0958-1669(02)00316-6

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg G, Steinberg N, Oppenheimer-Shaanan Y, Olender T, Doron S, Ben-Ari J, Sirota-Madi A, Bloom-Ackermann Z, Kolodkin-Gal I (2016) Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. Biofilms Microbiomes:1–11. doi:10.1038/npjbiofilms.2015.27

  • Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254:2959–2972. doi:10.1016/j.ccr.2010.06.005

    Article  CAS  Google Scholar 

  • Saimmai A, Udomsilp S, Maneerat S (2013) Production and characterization of biosurfactant from marine bacterium Inquilinus limosus KB3 grown on low-cost raw materials. Ann Microbiol 63:1327–1339. doi:10.1007/s13213-012-0592-7

    Article  CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248. doi:10.1016/S0167-7799(02)01943-1

    Article  CAS  PubMed  Google Scholar 

  • Sana S, Mazumder A, Datta S, Biswas D (2017) Towards the development of an effective in vivo wound healing agent from Bacillus sp. derived biosurfactant using Catla catla fish fat. RSC Adv 7:13668–13677. doi:10.1039/c6ra26904d

    Article  CAS  Google Scholar 

  • Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Balu A (2010) Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol 30:127–144. doi:10.3109/07388550903427280

    Article  CAS  PubMed  Google Scholar 

  • Scherr KE, Hasinger M, Loibner AP (2012) Increasing PAH (bio) accessibility in historically PAH-contaminated soils: waste versus food-grade oils. J Chem Technol Biotechnol 87:1229–1236. doi:10.1002/jctb.3823

    Article  CAS  Google Scholar 

  • Sen R (1997) Response surface optimization of the critical media components for the production of surfactin. Chem Technol Biotechnol 68:263–270. doi:10.1002/(SICI)1097-4660(199703)68-3<263

    Article  CAS  Google Scholar 

  • Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust Sci 34:714–724. doi:10.1016/j.pecs.2008.05.001

    Article  CAS  Google Scholar 

  • Sen R (2010) Surfactin biosynthesis, genetics and potential applications. Adv Exp Med Biol 672:315–319. doi:10.1007/978-1-4419-5979-9

    Google Scholar 

  • Sen R, Swaminathan T (1997) Application of response surface methodology to evaluate the optimum environmental conditions for the enhanced production of surfactin. Appl Microbiol Biotechnol 47:358–363. doi:10.1007/s002530050940

    Article  CAS  Google Scholar 

  • Sen R, Swaminathan T (2005) Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin. Process Biochem 40:2953–2958. doi:10.1016/j.procbio.2005.01.014

    Article  CAS  Google Scholar 

  • Silva SN, Farias CBB, Rufino RD, Luna JM, Sarubbo LA (2010) Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf B Biointerfaces 79:174–183. doi:10.1016/j.colsurfb.2010.03.050

    Article  CAS  PubMed  Google Scholar 

  • Silva DS, Castro CC, Silva FS, Sant AV, Vargas GD, Lima M (2014) Antiviral activity of a Bacillus sp. P34 peptide against pathogenic viruses of domestic animals. Braz J Microbiol 45:1089–1094. doi:10.1590/S1517-83822014000300043

    Article  PubMed Central  CAS  Google Scholar 

  • Singh A, Hamme JDV, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2 application aspects. Biotechnol Adv 25:99–121. doi:10.1016/j.biotechadv.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  • Sivapathasekaran C, Sen R (2017) Origin, properties, production and purification of microbial surfactants as molecules with immense commercial potential. Tenside Surfactant Deterg 54:92–107. doi:10.3139/113.110482

    Google Scholar 

  • Souza EC, Vessoni-Penna TC, de Souza ORP (2014) Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeter Biodegr 89:88–94. doi:10.1016/j.ibiod.2014.01.007

    Article  CAS  Google Scholar 

  • Stein T (2008) Whole-cell matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of bacteriocin/lantibiotic-producing bacteria. Rapid Commun Mass Spectrom 22:1146–1152. doi:10.1002/rcm.3481

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22:1259–1266. doi:10.1007/s11274-006-9170-0

    Article  CAS  Google Scholar 

  • Suthar H, Hingurao K, Desai A, Nerurkar A (2008) Evaluation of bioemulsifier mediated microbial enhanced oil recovery using sand pack column. J Microbiol Methods 75:225–230. doi:10.1016/j.mimet.2008.06.007

    Article  CAS  PubMed  Google Scholar 

  • Thaniyavarn J, Roonsawang N, Kameyama T, Haruki M, Imanaka TMM, Kanaya S (2003) Production and characterization of biosurfactants from Bacillus licheniformis F2.2. Biosci Biotechnol Biochem 67:1239–1244. doi:10.1271/bbb.67.1239

    Article  CAS  PubMed  Google Scholar 

  • Thavasi R, Subramanyam NVRM, Jayalakshmi S, Balasubramanian T, Banat IM (2011) Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Indian J Microbiol 51:30–36. doi:10.1007/s12088-011-0076-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian ZT, Chen LY, Li DH, Pang HY, Wu S, Jin-Biaoliu HL (2016) Characterization of a biosurfactant-producing strain Rhodococcus sp. HL-6. Romanian Biotechnol Lett 6:976. doi:10.3389/fmicb.2015.00976

    Google Scholar 

  • Usman MM, Dadrasnia A, Lim KT, Mahmud AF, Ismail S (2016) Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS Bioeng 3:289–304. doi:10.3934/bioeng.2016.3.289

    Article  Google Scholar 

  • Uzoigwe C, Burgess JG, Ennis CJ, Rahman PKSM (2015) Bioemulsifiers are not biosurfactants and require different screening approaches. Front Microbiol 6:245. doi:10.3389/fmicb.2015.00245

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargas JP, Carmona SEV, Moreno EZ, Casado NAR, Calva GC (2017) Bioremediation of soils from oil spill impacted sites using bioaugmentation with biosurfactants producing, native, free-living nitrogen fixing bacteria. Rev Int Contam Ambie 33:105–114. doi:10.20937/RICA.2017.33.esp01.09

    Article  Google Scholar 

  • Vecino X, Rodríguez-López L, Cruz JM, Moldes AB (2015) Sewage sludge polycyclic aromatic hydrocarbon (PAH) decontamination technique based on the utilization of a lipopeptide biosurfactant extracted from corn steep liquor. Agric Food Chem 63:7143–7150. doi:10.1021/acs.jafc.5b02346

    Article  CAS  Google Scholar 

  • Vedaraman N, Venkatesh N (2011) Production of surfactin by Bacillus subtilis MTCC 2423 from waste frying oils. Braz J Chem Eng 28:175–180. doi:10.1590/S0104-66322011000200001

    Article  CAS  Google Scholar 

  • Velho RV, Basso AP, Segalin J, Costa-Medina LF, Brandelli A (2013) The presence of sboA and spaS genes and antimicrobial peptides subtilosin a and subtilin among Bacillus strains of the Amazon basin. Genet Mol Biol 36:101–104. doi:10.1590/S1415-47572013000100014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadekar S, Kale S, Lali A, Bhowmick D, Pratap AP (2012) Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source. Prep Biochem Biotechnol 42:249–266. doi:10.1080/10826068.2011.603000

    Article  CAS  PubMed  Google Scholar 

  • Wei YH, Wang LF, Chang JS (2004) Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnol Prog 20:979–983. doi:10.1021/bp030051a

    Article  CAS  PubMed  Google Scholar 

  • Whang L-M, Liu P-WG, Ma CC, Cheng SS (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163. doi:10.1016/j.jhazmat.2007.05.063

    Article  CAS  PubMed  Google Scholar 

  • Xia WJ, Luo Z, Dong HP, Yu L, Cui QF, Bi YQ (2012) Synthesis, characterization and oil recovery application of biosurfactant produced by indigenous Pseudomonas aeruginosa WJ-1 using waste vegetable oils. Appl Biochem Biotechnol 166:1148–1166. doi:10.1007/s12010-011-9501-y

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Jiang Y, Qi D, Lu H, Yang F, Yang J, Chen L, Sun L, Xu X, Xue Y, Zhu Y, Jin Q (2008) Complete genome sequence of the extremophilic Bacillus cereus strain Q1 with industrial applications. J Bacteriol 191:1120–1121. doi:10.1128/JB.01629-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeh MS, Wei YH, Chang JS (2005) Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnol Prog 21:1329–1334. doi:10.1021/bp050040c

    Article  CAS  PubMed  Google Scholar 

  • Yong YC, Zhong JJ (2010) Recent advances in biodegradation in China: new microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochem 45:1937–1943. doi:10.1016/j.procbio.2010.04.009

    Article  CAS  Google Scholar 

  • Yuliani H, Sahlan M, Hermansyah H, Wijanarko A (2012) Selection and identification of polyaromatic hydrocarbon degrading bacteria. World Appl Sci J 20:1133–1138. doi:10.5829/idosi.wasj.2012.20.08.2123

    CAS  Google Scholar 

  • Zajsek K, Gorsek A (2010) Modelling of batch kefir fermentation kinetics for ethanol production by mixed natural microflora. Food Bioprod Process 88:55–60. doi:10.1016/j.fbp.2009.09.002

    Article  CAS  Google Scholar 

  • Zhang X, Xu D, Zhu C, Lundaa T, Scherr KE (2012) Isolation and identification biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chem Eng J 209:138–146. doi:10.1016/j.marpolbul.2015.09.053

    Article  CAS  Google Scholar 

  • Zouari R, Hamden K, El Feki A, Chaabouni K, Makni-Ayadi F, Sallemi F (2017) Evaluation of Bacillus subtilis SPB1 biosurfactant effects on hyperglycemia, angiotensin I-converting enzyme (ACE) activity and kidney function in rats fed on high-fat-high-fructose diet. Arch Physiol Biochem 123:112–120. doi:10.1080/13813455.2016.1261902

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology, Government of India (BT/Coord.II/01/03/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Rahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Soltanighias, T., Singh, A.E., Rahi, P. (2017). Mining Bacterial Diversity for Biosurfactants. In: Kalia, V., Shouche, Y., Purohit, H., Rahi, P. (eds) Mining of Microbial Wealth and MetaGenomics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5708-3_24

Download citation

Publish with us

Policies and ethics