Skip to main content

A Methodology to Reconstruct Large Damaged Regions in Heritage Structures

  • Chapter
  • First Online:
Digital Hampi: Preserving Indian Cultural Heritage

Abstract

While it is important to digitize heritage sites “as is”, building 3D models of damaged archaeological structures can be visually unpleasant due to the presence of large missing regions. In this chapter, we discuss geometric reconstruction of such large damaged regions (or holes) in 3D digital models. Without constraining the size or complexity of the damaged region, the missing 3D geometry inference problem is solved by making use of geometric prior from self-similar structures which provide a salient cue about the missing surface characteristics that may be unique to an object class. The underlying surface is then recovered by adaptively propagating 3D surface smoothness from local geometric information around the boundary of the hole and appropriately using the cue provided by the available self-similar examples. We have used two methodologies to effectively harness the geometric prior: (i) a non-iterative framework based on tensor voting when multiple self-similar examples are available and (ii) a dictionary learning-based method when only a single self-similar example is available. We showcase the relevance of our method in the archaeological domain which warrants “filling-in” missing information in damaged heritage sites. We show several examples from Hampi which is a UNESCO heritage site located in Northern Karnataka in India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aharon M, Elad M, Bruckstein A (2006) K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54:4311–4322

    Article  MATH  Google Scholar 

  2. Andriy M, Xubo S (2010) Point set registration: Coherent point drift. IEEE Trans Pattern Anal Mach Intell 32:2262–2275. https://doi.org/10.1109/TPAMI.2010.46

  3. Breckon TP, Fisher RB (2008) Three-dimensional surface relief completion via nonparametric techniques. IEEE Trans Pattern Anal Mach Intell 30:2249–2255

    Article  Google Scholar 

  4. Callieri M, Cignoni P, Ganovelli F, Impoco G, Montani C, Pingi P, Ponchio F, Scopigno R (2004) Visualization and 3D data processing in the David restoration. IEEE Comput Gr Appl 24:16–21

    Article  Google Scholar 

  5. Cignoni P, Corsini M, Ranzuglia G (2008) MeshLab: an Open-Source 3D Mesh Processing System. ERCIM News. 45–46

    Google Scholar 

  6. Davis J, Marschner S.R, Garr M, Levoy M (2002) Filling holes in complex surfaces using volumetric diffusion. 3D Data processing visualization and transmission. In: First International Symposium on. 428–438. https://doi.org/10.1109/TDPVT.2002.1024098

  7. Geuzaine C, Remacle JF (2009) Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Method Eng 79:1309–1331

    Article  MathSciNet  MATH  Google Scholar 

  8. Gupta S, Castleman K.R, Markey M.K, Bovik A.C (2010) Texas 3D Face Recognition Database. In: Proc. 2010 SSIAI, TX2010, Austin, pp 97–100. https://doi.org/10.1109/SSIAI.2010.5483908

  9. In: Google-Art-Project (2011) http://www.googleartproject.com/

  10. In: INTACH (1984) http://www.intach.org/

  11. In: Kinect (2010) http://www.xbox.com/en-IN/Kinect/

  12. In: Photosynth (2010) http://photosynth.net

  13. In: p3d (2013) http://p3d.in

  14. Jia J, Tang CK (2004) Inference of segmented color and texture description by tensor voting. IEEE Trans Pattern Anal Mach Intell 26:771–786

    Article  Google Scholar 

  15. Julien, M, Francis, B, Jean, P, Guillermo, S (2009) Online dictionary learning for sparse coding. ICML. pp 689–696

    Google Scholar 

  16. Kulkarni M, Rajagopalan AN, Rigoll G (2012) Depth Inpainting with Tensor Voting Using Local Geometry. In Proceedings, VISAPP

    Google Scholar 

  17. Kulkarni M, Rajagopalan AN (2013) Depth inpainting by tensor voting. J Opt Soc Am A opt Image Sci 30:1155–1165

    Article  Google Scholar 

  18. Lai K, Bo L, Ren X, Fox D (2013) RGB-D Object Recognition: Features, Algorithms, and a Large Scale Benchmark. Consumer Depth Cameras for Computer Vision: Research Topics and Applications, pp 167–192

    Google Scholar 

  19. Levoy M, Pulli K, Curless B, Rusinkiewicz S, Koller D, Pereira L, Ginzton M, Anderson S, Davis J, Ginsberg J, Shade J, Fulk D (2000) The digital Michelangelo project: 3D scanning of large statues. ACM SIGGRAPH 2000:131–144

    Google Scholar 

  20. Liepa, P (2003) Filling holes in meshes. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing. pp 200–205

    Google Scholar 

  21. Mairal J, Bach F, Ponce J, Sapiro G (2010) Online learning for matrix factorization and sparse coding. J Mach Learn Res 11:19–60

    MathSciNet  MATH  Google Scholar 

  22. Padalkar MG, Joshi MV (2015) Auto-inpainting heritage scenes: a complete framework for detecting and infilling cracks in images and videos with quantitative assessment. Mach Vis Appl 26:317–337

    Article  Google Scholar 

  23. Patrick P, Michel G, Andrew B (2003) Poisson image editing. ACM Trans Graph 22:313–318

    Article  Google Scholar 

  24. Pauly M, Mitra NJ, Giesen J, Gross M, Guibas LJ (2005) Example-based 3D scan completion. In: Proceedings of the third Eurographics symposium on Geometry processing

    Google Scholar 

  25. Philippos M, Grard M (2006) Tensor Voting: A Perceptual Organization Approach to Computer Vision and Machine Learning. Synth Lect Image Video Multimed Process. 2:1–136

    Google Scholar 

  26. Scharstein D, Szeliski R (2002) A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. Int J Comput Vision 47:7–42

    Article  MATH  Google Scholar 

  27. Shailaja, T (2013) Monuments gone missing, In: The Hindu. http://www.thehindu.com/features/metroplus/monuments-gone-missing

  28. Silberman N, Hoiem D, Kohli P, Fergus R (2012) Indoor segmentation and support inference from RGBD images. ECCV. pp 746–760

    Google Scholar 

  29. Sturm, J, Engelhard, N, Endres, F, Burgard, W, Cremers, D (2012) A benchmark for the evaluation of RGB-D SLAM systems. In: Proceeding of the international conference on intelligent robot systems (IROS)

    Google Scholar 

  30. Szeliski R (2010) Computer Vision: Algorithms and Applications. Springer, New York

    Google Scholar 

  31. Tosic, I, Olshausen, B.A, Culpepper, B.J (2010) Learning sparse representations of depth. arXiv:1011.6656

  32. UNESCO (2003) In: Draft charter on the preservation of the digital heritage. UNESCO General Conference 32nd session

    Google Scholar 

  33. Verdera, J, Caselles, V, Bertalmio, M, Sapiro, G (2003) Inpainting surface holes. In: Proceedings ICIP 2003, vol 2 II– pp 903–906

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Rajagopalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajagopalan, A.N., Sahay, P., Vasu, S. (2017). A Methodology to Reconstruct Large Damaged Regions in Heritage Structures. In: Mallik, A., Chaudhury, S., Chandru, V., Srinivasan, S. (eds) Digital Hampi: Preserving Indian Cultural Heritage. Springer, Singapore. https://doi.org/10.1007/978-981-10-5738-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5738-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5737-3

  • Online ISBN: 978-981-10-5738-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics