Skip to main content

Influence of LED Lighting on In Vitro Plant Regeneration and Associated Cellular Redox Balance

  • Chapter
  • First Online:
Light Emitting Diodes for Agriculture

Abstract

Light spectral quality, irradiation level in terms of photosynthetic photon flux density (PPFD) and photoperiod have a profound influence on the morphogenesis and growth of plants. In recent years, the application of light emitting diodes (LEDs) has attracted considerable attention as an alternative artificial light source not only for controlled environmental agriculture but also for plant tissue culture experiments. The advantages of LEDs over the conventional gas discharge lamps used in plant tissue culture systems are the ability to regulate the levels of photosynthetically active and photomorphogenic radiation necessary for plant morphogenesis, small size, longer lifespan and low thermal energy output. A conspicuous influence of LED lighting on plant regeneration and secondary metabolite accumulation has been suggested by numerous studies in a variety of plant species. However, the responses of plants considerably vary to different light treatments, and there is no specific pattern among the various species. Apart from its impact on plant regeneration responses up to the stage of ex vitro transfer, LED irradiation also significantly alters the cellular redox balance. LED-induced changes in the generation of reactive oxygen species (ROS) and subsequent involvement of antioxidative metabolic activities have also been reported. This chapter describes the influence of LED light on in vitro plant regeneration including acclimatization, ex vitro transfer and associated ROS network with antioxidative defence. The outcome of the findings along with the potential of LEDs in regulating plant regeneration responses has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MR, Anis M (2014) Changes in activity of antioxidant enzymes and photosynthetic machinery during acclimatization of micropropagated Cassia alata L. plantlets. In Vitro Cell Dev Biol—Plant 50:601–609

    Google Scholar 

  • Al-Mayahi AMW (2016) Effect of red and blue light emitting diodes “CRB-LED” on in vitro organogenesis of date palm (Phoenix dactylifera L.) cv. Alshakr. World J Microbiol Biotechnol 32:160

    Article  PubMed  Google Scholar 

  • Alvarenga ICA, Pacheco FV, Silva ST, Bertolucci SKV, Pinto JEBP (2015) In vitro culture of Achillea millefolium L.: quality and intensity of light on growth and production of volatiles. Plant Cell Tiss Organ Cult 122:299–308

    Google Scholar 

  • Arias JP, Zapata K, Rojano B, Arias M (2016) Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana. J Photochem Photobiol B Biol 163:87–91

    Article  CAS  Google Scholar 

  • Baque MA, Hahn EJ, Paek KY (2010) Induction mechanism of adventitious root from leaf explants of Morinda citrifolia as affected by auxin and light quality. In Vitro Cell Dev Biol—Plant 46:71–80

    Google Scholar 

  • Batista DS, de Castro KM, da Silva AR, Teixeira ML, Sales TA, Soares LI, Cardoso MDG, Santos MDO, Viccini LF, Otoni WC (2016) Light quality affects in vitro growth and essential oil profile in Lippia alba (Verbenaceae). In Vitro Cell Dev Biol—Plant 52:276–282

    Google Scholar 

  • Baťková P, Pospíšilová J, Synková H (2008) Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer. Biol Plant 52:413–422

    Google Scholar 

  • Bello-Bello JJ, Martínez-Estrada E, Caamal-Velázquez JH, Morales-Ramos V (2016) Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). Afr J Biotechnol 15(8):272–277

    Article  Google Scholar 

  • Benson EE (2000) Do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cell Dev Biol—Plant 36:163–170

    Google Scholar 

  • Bhattacharjee S (2010) Sites of generation and physicochemical basis of formation of reactive oxygen species in plant cell. In: Dutta Gupta S (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Florida, pp 1–30

    Google Scholar 

  • Bleser E, Tittmann S, Rühl EH (2015) Effects of LED-illumination and light intensity on the acclimatization of in vitro plantlets to ex vitro conditions. Acta Hort 1082:131–139

    Article  Google Scholar 

  • Botero Giraldo C, Urrea Trujillo AI, Naranjo Gómez EJ (2015) Regeneration potential of Psychotria ipecacuanha (Rubiaceae) from thin cell layers. Acta Biol Colomb 20(3):181–192

    Article  Google Scholar 

  • Budiarto K (2010) Spectral quality affects morphogenesis on Anthurium plantlet during in vitro culture. Agrivita 32(3):234–240

    Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Agrawal DC, Lee MR, Lee RJ, Kuo CL, Wu CR, Tsay HS, Chang HC (2016) Influence of LED light spectra on in vitro somatic embryogenesis and LC–MS analysis of chlorogenic acid and rutin in Peucedanum japonicum Thunb.: a medicinal herb. Bot Stud 57(9):1–9

    Google Scholar 

  • Christie JM, Jenkins GI (1996) Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells. Plant Cell 8(9):1555–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung JP, Huang CY, Dai TE (2010) Spectral effects on embryogenesis and plantlet growth of Oncidium ‘Gower Ramsey’. Sci Hortic 124:511–516

    Article  CAS  Google Scholar 

  • Daud N, Faizal A, Geelen D (2013) Adventitious rooting of Jatropha curcas L. is stimulated by phloroglucinol and by red LED light. In Vitro Cell Dev Biol—Plant 49:183–190

    Google Scholar 

  • de Carvalho MHC (2008) Drought stress and reactive oxygen species. Plant Signal Behav 3(3):156–165

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Biol 43:599–626

    Article  CAS  Google Scholar 

  • Devlin PF, Christie JM, Terry MJ (2007) Many hands make light work. J Exp Bot 58:3071–3077

    Article  CAS  PubMed  Google Scholar 

  • Dewir YH, Chakrabarty D, Hahn EJ, Paek KY (2006) The effects of paclobutrazol, light emitting diodes (LEDs) and sucrose on flowering of Euphorbia millii plantlets in vitro. Eur J Hortic Sci 71(6):240–244

    CAS  Google Scholar 

  • Dutta Gupta S (2010) Role of free radicals and antioxidants in in vitro morphogenesis. In: Dutta Gupta S (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Florida, pp 229–247

    Chapter  Google Scholar 

  • Dutta Gupta S, Datta S (2003/4) Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. Biol Plant 47: 79–183

    Google Scholar 

  • Dutta Gupta S, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220

    Article  Google Scholar 

  • Dutta Gupta S, Sahoo TK (2015) Light emitting diode (LED)-induced alteration of oxidative events during in vitro shoot organogenesis of Curculigo orchioides Gaertn. Acta Physiol Plant 37:233

    Article  Google Scholar 

  • Edesi J, Kotkas K, Pirttilä AM, Häggman H (2014) Does light spectral quality affect survival and regeneration of potato (Solanum tuberosum L.) shoot tips after cryopreservation? Plant Cell Tiss Organ Cult 119:599–607

    Google Scholar 

  • Faisal M, Anis M (2009) Changes in photosynthetic activity, pigment composition, electrolyte leakage, lipid peroxidation, and antioxidant enzymes during ex vitro establishment of micropropagated Rauvolfia tetraphylla plantlets. Plant Cell Tiss Organ Cult 99:125–132

    Google Scholar 

  • Ferreira LT, de Araújo Silva MM, Ulisses C, Camara TR, Willadino L (2017) Using LED lighting in somatic embryogenesis and micropropagation of an elite sugarcane variety and its effect on redox metabolism during acclimatization. Plant Cell Tiss Organ Cult 128:211–221

    Google Scholar 

  • Franklin KA, Whitelam GC (2004) Light signals, phytochromes and cross-talk with other environmental cues. J Exp Biol 55(395):271–276

    CAS  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Godo T, Fujiwara K, Guan K, Miyoshi K (2011) Effects of wavelength of LED-light on in vitro asymbiotic germination and seedling growth of Bletilla ochracea Schltr. (Orchidaceae). Plant Biotechnol 28:397–400

    Article  Google Scholar 

  • Hahn EJ, Kozai T, Paek KY (2000) Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro growth of Rehmannia glutinosa plantlets. J Plant Biol 43(4):247–250

    Article  Google Scholar 

  • Halliwell B (1990) How to characterize a biological antioxidant. Free Radic Res Commun 9:1–32

    Article  CAS  PubMed  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    Article  CAS  Google Scholar 

  • Heo JW, Shin KS, Kim SK, Paek KY (2006) Light quality affects in vitro growth of grape ‘Teleki 5BB’. J Plant Biol 49(4):276–280

    Article  Google Scholar 

  • Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, López-Vidriero I, Franco-Zorrilla JM, Solano R, Trevisan M, Pradervand S, Xenarios I, Fankhauser C (2012) Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71:699–711

    Article  CAS  PubMed  Google Scholar 

  • Hughes KW (1981) In vitro ecology: exogenous factors affecting growth and morphogenesis in plant culture systems. Environ Exp Bot 21:281–288

    Article  CAS  Google Scholar 

  • Hung CD, Hong CH, Jung HB, Kim SK, Van Ket N, Nam MW, Choi DH, Lee HI (2015) Growth and morphogenesis of encapsulated strawberry shoot tips under mixed LEDs. Sci Hortic 194:194–200

    Article  Google Scholar 

  • Hung CD, Hong CH, Kim SK, Lee KH, Park JY, Dung CD, Nam MW, Choi DH, Lee HI (2016a) In vitro proliferation and ex vitro rooting of microshoots of commercially important rabbiteye blueberry (Vaccinium ashei Reade) using spectral lights. Sci Hortic 211:248–254

    Article  Google Scholar 

  • Hung CD, Hong CH, Kim SK, Lee KH, Park JY, Nam MW, Choi DH, Lee HI (2016b) LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol Plant 38:152

    Article  Google Scholar 

  • Jao RC, Fang W (2004a) Effects of frequency and duty ratio on the growth of potato plantlets in vitro using light-emitting diodes. HortScience 39(2):375–379

    Google Scholar 

  • Jao RC, Fang W (2004b) Growth of potato plantlets in vitro is different when provided concurrent versus alternating blue and red light photoperiods. HortScience 39(2):380–382

    Google Scholar 

  • Jao RC, Lai CC, Fang W, Chang SF (2005) Effects of red light on the growth of Zantedeschia plantlets in vitro and tuber formation using light-emitting diodes. HortScience 40(2):436–438

    Google Scholar 

  • Jung ES, Lee S, Lim SH et al (2013) Metabolite profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under different LED lights and its correlations with antioxidant activities. Plant Sci 210:61–69

    Article  CAS  PubMed  Google Scholar 

  • Kaewjampa N, Shimasaki K (2012) Effects of green LED lighting on organogenesis and superoxide dismutase (SOD) activities in protocorm-like bodies (PLBs) of Cymbidium cultured in vitro. Environ Control Biol 50(3):247–254

    Article  CAS  Google Scholar 

  • Karataş M, Aasim M, Dazkirli M (2016) Influence of light-emitting diodes and benzylaminopurin on adventitious shoot regeneration of water hyssop (Bacopa monnieri (L.) Pennell) in vitro. Arch Biol Sci 68(3):501–508

    Google Scholar 

  • Kasahara M, Kagawa T, Sato Y, Kiyosue T, Wada M (2004) Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol 135:1388–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur A, Sandhu JS (2015) High throughput in vitro micropropagation of sugarcane (Saccharum offiinarum L.) from spindle leaf roll segments: cost analysis for agri-business industry. Plant Cell Tiss Organ Cult 120:339–350

    Google Scholar 

  • Kim YW, Moon HK (2014) Enhancement of somatic embryogenesis and plant regeneration in Japanese red pine (Pinus densiflora). Plant Biotechnol Rep 8:259–266

    Article  Google Scholar 

  • Kim SJ, Hahn EJ, Heo JW, Paek KY (2004) Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci Hortic 101:143–151

    Article  Google Scholar 

  • Kovalchuk I (2010) Multiple roles of radicals in plants. In: Dutta Gupta S (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Florida, pp 31–44

    Chapter  Google Scholar 

  • Kozai T, Smith MAL (1995) Environmental control in plant tissue culture—general introduction and overview. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, The Netherlands, pp 301–318

    Chapter  Google Scholar 

  • Kozai T, Xiao Y (2008) A commercialized photoautotrophic micropropagation system. In: Dutta Gupta S, Ibaraki Y (eds) Plant tissue culture engineering. Springer, The Netherlands, pp 355–371

    Google Scholar 

  • Kozai T, Fujiwara K, Hayashi M, Aitken-Christie J (1992) Thein vitro environment and its control in micropropagation. In: Kurata K, Kozai T (eds) Transplant production systems. Kluwer Academic Publishers, The Netherlands, pp 247–282

    Chapter  Google Scholar 

  • Kubo A, Saji H, Tanaka K, Kondo N (1995) Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone orsulfur dioxide. Plant Mol Biol 29:479–489

    Article  CAS  PubMed  Google Scholar 

  • Kurilčik A, Miklušytė-Čanova R, Žilinskaitė S, Dapkūnienė S, Duchovskis P, Kurilčik G, Tamulaitis G, Žukauskas A (2007) In vitro cultivation of grape culture under solid-state lighting. Sodinink Daržinink 26(3):235–245

    Google Scholar 

  • Kurilčik A, Miklušytė-Čanova R, Dapkūnienė S, Žilinskaitė S, Kurilčik G, Tamulaitis G, Duchovskis P, Žukauskas A (2008) In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent Eur J Biol 3(2):161–167

    Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Shroeder JI (2003) NADPH oxidases AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. Eur Mol Biol Organ J 22(11):2623–2633

    Article  CAS  Google Scholar 

  • Kwon AR, Cui HY, Lee H, Shin H, Kang KS, Park SY (2015) Light quality affects shoot regeneration, cell division, and wood formation in elite clones of Populus euramericana. Acta Physiol Plant 37:65

    Article  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochem 27:969–978

    Article  CAS  Google Scholar 

  • Lee KP, Piskurewicz U, Turečková V, Carat S, Chappuis R, Strnad M, Fankhauser C, Lopez-Molina L (2012) Spatially and genetically distinct control of seed germination by phytochromes A and B. Genes Dev 26:1984–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee NN, Choi YE, Moon HK (2014) Effect of LEDs on shoot multiplication and rooting of rare plant Abeliophyllum distichum Nakai. J Plant Biotechnol 41:94–99

    Article  Google Scholar 

  • Lercari B, Tognoni F, Anselmo G, Chapel D (1986) Photocontrol of in vitro bud differentiation in Saintpaulia ionantha leaves and Lycopersicon esculentum cotyledons. Physiol Plant 67(3):340–344

    Article  CAS  Google Scholar 

  • Li H, Xu Z, Tang C (2010) Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tiss Organ Cult 103:155–163

    Google Scholar 

  • Lian ML, Murthy HN, Paek KY (2002) Effects of light emitting diodes (LEDs) on the in vitro induction and growth of bulblets of Lilium oriental hybrid ‘Pesaro’. Sci Hortic 94:365–370

    Article  Google Scholar 

  • Lin Y, Li J, Li B, He T, Chun Z (2011) Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tiss Organ Cult 105:329–335

    Google Scholar 

  • Liu Y, Tong Y, Zhu Y, Ding H, Smith EA (2006) Leaf chlorophyll readings as an indicator for spinach yield and nutritional quality with different nitrogen fertilizer applications. J Plant Nutr 29:1207–1217

    Article  CAS  Google Scholar 

  • Ma X, Wang Y, Liu M, Xu J, Xu Z (2015) Effects of green and red lights on the growth and morphogenesis of potato (Solanum tuberosum L.) plantlets in vitro. Sci Hortic 190:104–109

    Article  Google Scholar 

  • Mai NT, Binh PT, Gam DT, Khoi PH, Hung NK, Ngoc PB, Ha CH, Thanh Binh HT (2016) Effects of light emitting diodes—LED on regeneration ability of Coffea canephora mediated via somatic embryogenesis. Tap Chi Sinh Hoc 38(2):228–235

    Article  Google Scholar 

  • Maluta FA, Bordignon SR, Rossi ML, Ambrosano GMB, Rodrigues PHV (2013) In vitro culture of sugarcane exposed to different light sources. Pesqui Agropecu Bras 48(9):1303–1307

    Article  Google Scholar 

  • Manivannan A, Soundararajan P, Halimah N, Ko CH, Jeong BR (2015) Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic Environ Biotechnol 56(1):105–113

    Article  CAS  Google Scholar 

  • Massa GD, Kim HH, Wheeler RM, Mitchell CA (2008) Plant productivity in response to LED lighting. HortScience 43(7):1951–1956

    Google Scholar 

  • Mengxi L, Zhigang X, Yang Y, Yijie F (2011) Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell Tiss Organ Cult 106:1–10

    Google Scholar 

  • Merkle SA, Montello PM, Xia X, Upchurch BL, Smith DR (2005) Light quality treatments enhance somatic seedling production in three southern pine species. Tree Physiol 26:187–194

    Article  Google Scholar 

  • Moon HK, Park SY, Kim YW, Kim CS (2006) Growth of Tsuru-rindo (Tripterospermum japonicum) cultured in vitro under various sources of light-emitting diode (LED) irradiation. J Plant Biol 49(2):174–179

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nhut DT, Hong LTA, Watanabe H, Goi M, Tanaka M (2000) Growth of banana plantlets cultured in vitro under red and blue light-emitting diode (LED) irradiation source. Acta Hortic 575:117–124

    Google Scholar 

  • Nhut DT, Takamura T, Watanabe H, Okamoto K, Tanaka M (2003) Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tiss Organ Cult 73:43–52

    Google Scholar 

  • Nhut DT, Huy NP, Tai NT, Nam NB, Luan VQ, Hien VT, Tung HT, Vinh BT, Luan TC (2015) Light-emitting diodes and their potential in callus growth, plantlet development and saponin accumulation during somatic embryogenesis of Panax vietnamensis Ha et Grushv. Biotechnol Biotechnol Equip 29(2):299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Kim MJ (2010) Development of zygotic embryos and seedlings is affected by radiation spectral compositions from light emitting diode (LED) system in Chestnut (Castanea crenata S. et Z.). J Korean For Soc 99(5):750–754

    Google Scholar 

  • Park SY, Yeung EC, Paek KY (2010) Endoreduplication in Phalaenopsis is affected by light quality from light-emitting diodes during somatic embryogenesis. Plant Biotechnol Rep 4(4):303–309

    Article  CAS  Google Scholar 

  • Pavlović D, Ðorđević V, Kocić G (2002) A “cross-talk” between oxidative stress and redox cell signaling. Med Biol 9(2):131–137

    Google Scholar 

  • Poudel PR, Kataoka I, Mochioka R (2008) Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tiss Organ Cult 92:147–153

    Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG, Bautista-Aguilar JR (2016) The effect of light quality on growth and development of in vitro plantlet of Stevia rebaudiana Bertoni. Sugar Tech. doi:10.1007/s12355-016-0459-5

  • Sahoo TK (2013) Effects of light emitting diodes (LEDs) on changes in antioxidative enzyme activities and compounds during in vitro shoot organogenesis of Curculigo orchioides Gaetrn. M. Tech thesis, Indian Institute of Technology Kharagpur, India

    Google Scholar 

  • Samuolienė G, Brazaitytė A, Urbonavičiūtė A, Šabajevienė G, Duchovskis P (2010) The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirb Agric 97:99–104

    Google Scholar 

  • Seon JH, Cui YY, Kozai T, Paek KY (2000) Influence of in vitro growth conditions on photosynthetic competence and survival rate of Rehmannia glutinosa plantlets during acclimatization period. Plant Cell Tiss Organ Cult 61:135–142

    Google Scholar 

  • Shin KS, Murthy HN, Heo JW, Hahn EJ, Paek KY (2008) The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant 30:339–343

    Article  CAS  Google Scholar 

  • Shohael AM, Ali MB, Yu KW, Hahn EJ, Islam R, Paek KY (2006) Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochem 41:1179–1185

    Article  CAS  Google Scholar 

  • Silva MMA, de Oliveira ALB, Oliveira-Filho RA, Gouveia-Neto AS, Camara TJR, Willadino LG (2014) Effect of blue/red LED light combination on growth and morphogenesis of Saccharum officinarum plantlets in vitro. SPIE 8947.doi:10.1117/12.2036200

  • Silva MMA, de Oliveira ALB, Oliveira-Filho RA, Camara T, Willadino L, Gouveia-Neto A (2016) The effect of spectral light quality on in vitro culture of sugarcane. Acta Sci Biol Sci 38(2):157–161

    Article  Google Scholar 

  • Simlat M, Ślęzak P, Moś M, Warchol M, Skrzypek E, Ptak A (2016) The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. Sci Hortic 211:295–304

    Article  CAS  Google Scholar 

  • Tanaka M, Takamura T, Watanabe H, Endo M, Yanagi T, Okamoto K (1998) In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs). J Hort Sci Biotechnol 73:39–44

    Article  Google Scholar 

  • Vieira LDN, de Freitas Fraga HP, dos Anjos KG, Puttkammer CC, Scherer RF, da Silva DA, Guerra MP (2015) Light-emitting diodes (LED) increase the stomata formation and chlorophyll content in Musa acuminata (AAA) ‘Nanicão Corupá’ in vitro plantlets. Theor Exp Plant Physiol 27(2):91–98

    Article  CAS  Google Scholar 

  • Wilken D, Gonzalez EJ, Gerth A, Gómez-Kosky R, Schumann A, Claus D (2014) Effect of immersion systems, lighting, and TIS designs on biomass increase in micropropagating banana (Musa spp. cv. ‘Grande naine’ AAA). In Vitro Cell Dev Biol—Plant 50:582–589

    Google Scholar 

  • Wongnok A, Piluek C, Techasilpitak T, Tantivivat S (2008) Effects of light emitting diodes on micropropagation of Phalaenopsis orchids. Acta Hortic 788:149–156

    Article  Google Scholar 

  • Wu HC, Lin CC (2012) Red light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate Protea cynaroides L. plantlets in vitro. HortScience 47(10):1490–1494

    CAS  Google Scholar 

  • Zhong S, Shi H, Xue C, Wang L, Xi Y, Li J, Quail PH, Deng XW, Guo H (2012) A molecular framework of light-controlled phytohormone action in Arabidopsis. Curr Biol 22:1530–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dutta Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dutta Gupta, S., Agarwal, A. (2017). Influence of LED Lighting on In Vitro Plant Regeneration and Associated Cellular Redox Balance. In: Dutta Gupta, S. (eds) Light Emitting Diodes for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5807-3_12

Download citation

Publish with us

Policies and ethics