Skip to main content

Microbial Community Composition and Functions Through Metagenomics

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives
  • 1870 Accesses

Abstract

Metagenomic approaches have provided a better understanding of microbial diversity and function across the terrestrial biome. Initial studies on soil metagenomics involved construction of libraries and sequencing of cloned genes to know the product encoded, but now a days direct sequence-based information plays an important role in functional profiling of environmental DNA. The rich information obtained from soil metagenome provides new insight into the taxonomic and functional diversity of soil microorganism. Some of the techniques of molecular biology research such as clone-based gene sequence analysis, molecular fingerprinting, next-generation sequencing, and many others have proved very useful in analyzing unknown environmental DNA sample and opened a flux gate of exciting research finding. Additionally, development of new environmental DNA isolation method as well as improved cloning systems has accelerated the pace of research. More importantly, metagenomic tools have resulted in discovery of several novel genes coding for protease, lipase, amylase, alcohol oxidoreductase, antibiotic resistance, etc., from ecological niches including meadows, crop fields, and others. With metagenomic approaches, new dimension in the characterization of complex microbial community has been attained. Surely, metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abubucker S, Segata N, Goll J (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8:e1002358. doi:10.1371/journal.pcbi.1002358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Alvarez TM, Goldbeck R, CRd S et al (2013) Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS One 8:e70014. doi:10.1371/journal.pone.0070014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez TM, Liberato MV, Cairo JPLF et al (2015) A novel member of GH16 family derived from sugarcane soil metagenome. Appl Biochem Biotechnol 177:304–317

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Binder BJ, Olsen RJ et al (1990a) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amann RI, Krumholz L, Stahl DA (1990b) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo JF, de Castro AP, Costa MMC et al (2012) Characterization of soil bacterial assemblies in Brazilian Savanna-like vegetation reveals Acidobacteria dominance. Microb Ecol 64:760–770

    Article  CAS  PubMed  Google Scholar 

  • Arwidsson Z, Elgh-Dalgrenb K, von Kronhelm T et al (2010) Remediation of heavy metal contaminated soil washing residues with amino polycarboxylic acids. J Hazard Mater 173:697–704

    Article  CAS  PubMed  Google Scholar 

  • Aydemir U, Candolfi C, Ormeci A et al (2014) High temperature thermoelectric properties of the type-I clathrate Ba8 Nix Ge46-x-y-Οy square(y). J Phys Condens Matter 26:485801. doi:10.1088/0953-8984/26/48/485801

  • Bates ST, Berg-Lyons D, Caporaso JG et al (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917

    Article  CAS  PubMed  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135

    Article  CAS  Google Scholar 

  • Bengtson P, Sterngren AE, Rousk J (2012) Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates. Appl Environ Microbiol 78:5906–5911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 65:385–395

    Article  CAS  Google Scholar 

  • Berlemont R, Jacquin O, Delsaute M et al (2013) Novel cold-adapted esterase MHlip from an Antarctic soil metagenome. Biology 2:177–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bijtenhoorn P, Mayerhofer H, Muller-Dieckmann J et al (2011) A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 6:e26278. doi:10.1371/journal.pone.0026278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomberg M, Timonen S (2009) Effect of tree species and mycorrhizal colonization on the archaeal population of boreal forest rhizospheres. Appl Environ Microbiol 75:308–315

    Article  CAS  PubMed  Google Scholar 

  • Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  PubMed  Google Scholar 

  • Buee M, Reich M, Murat C et al (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  CAS  PubMed  Google Scholar 

  • Burgmann H, Widmer F, Sigler WV et al (2004) New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70:240–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardinale M (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Front Microbiol 5:94. doi:10.3389/fmicb.2014.00094

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang FY, Brady SF (2013) Discovery of indolotryptoline antiproliferative agents by homology-guided metagenomic screening. Proc Natl Acad Sci U S A 110:2478–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chemerys A, Pelletier E, Cruaud C et al (2014) Characterization of novel polycyclic aromatic hydrocarbon dioxygenases from the bacterial metagenomic DNA of a contaminated soil. Appl Environ Microbiol 80:6591–6600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Charles TC (2016) Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases. Appl Microbiol Biotechnol 100:7611–7627

    Article  CAS  PubMed  Google Scholar 

  • Choudhury SP, Schmid M, Hartmann A et al (2009) Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur J Soil Biol 45:114–122

    Article  CAS  Google Scholar 

  • Cretoiu MS, Kielak AM, Al-Soud WA et al (2012) Mining of unexplored habitats for novel chitinases-chiA as a helper gene proxy in metagenomics. Appl Microbiol Biotechnol 94:1347–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cretoiu MS, Berini F, Kielak AM et al (2015) A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil. Appl Microbiol Biotechnol 99:8199–8215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Countinho PM, Stam M, Blanc E et al (2003) Why are there so many carbohydrate-active enzyme-related genes in plants? Trends Plant Sci 8:563–565

    Article  CAS  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    Article  CAS  PubMed  Google Scholar 

  • de Castro AP, Sartori da Silva MRS, Quirino BF et al (2016) Microbial diversity in Cerrado biome (Neotropical Savanna) soils. PLoS One 11:e0148785. doi:10.1371/journal.pone.0148785

    Article  PubMed  CAS  Google Scholar 

  • Delmont TO, Malandain C, Prestat E et al (2011) Metagenomic mining for microbiologists. ISME J 5:1837–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeSantis TZ, Brodie EL, Moberg JP et al (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Xu J, Feng G et al (2016) Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci Rep 6:31802. doi:10.1038/srep31802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorokhova MF, Kosheleva NE, Terskaya EV (2015) Algae and cyanobacteria in soils of Moscow. AJPS 6:2461–2471

    Article  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Leff JW, Adams BJ et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg KJ, Patel S, Wencewicz TA et al (2015) The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chem Biol 22:888–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg KJ, Patel S, Witt E et al (2016) Identification of genes conferring tolerance to lignocellulose-derived inhibitors by functional selections in soil metagenomes. Appl Environ Microbiol 82:528–537

    Article  CAS  PubMed Central  Google Scholar 

  • Foulon J, Zappelini C, Durand A et al (2016) Impact of poplar-based phytomanagement on soil properties and microbial communities in a metalcontaminated site. FEMS Microbiol Ecol 92:fiw163. doi:10.1093/femsec/fiw163

    Article  PubMed  CAS  Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM et al (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentry TJ, Wickham GS, Schadt CW et al (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175

    Article  CAS  PubMed  Google Scholar 

  • Ghebremedhin B, Layer F, Konig W et al (2008) Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences. J Clin Microbiol 46:1019–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie DE, Brady SF, Bettermann AD et al (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4301–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–114

    Article  CAS  Google Scholar 

  • Goodrich JK, Rienzi SCD, Poole AC et al (2014) Conducting a microbiome study. Cell 158:250–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacquard S, Garrido-Oter R, Gonzalez A et al (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(R):245–249

    Article  Google Scholar 

  • He Z, Gentry TJ, Schadt CW et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    Article  CAS  PubMed  Google Scholar 

  • Henriques AC, De Marco P (2015) Methanesulfonate (MSA) catabolic genes from mrine and estuarine bacteria. PLoS One 10:e0125735. doi:10.1371/journal.pone.0125735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hjort K, Presti I, Elvang A et al (2014) Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics. Appl Microbiol Biotechnol 98:2819–2828

    Article  CAS  PubMed  Google Scholar 

  • Hu XP, Heath C, Taylor MP et al (2012) A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil. Extremophiles 16:79–86

    Article  CAS  PubMed  Google Scholar 

  • Hyatt D, LoCascio PF, Hauser LJ et al (2012) Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28:2223–2230

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Haque MS, Islam MM et al (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13:493. doi:10.1186/1471-2164-13-493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson JK, Neufeld JD, Moran MA et al (2012) Omics for understanding microbial functional dynamics. Environ Microbiol 14:1–3

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Lin M, Zhang Y et al (2013) Identification and characterization of a novel trehalose synthase gene derived from saline-alkali soil metagenomes. PLoS One 8:e77437. doi:10.1371/journal.pone.0077437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez DJ, Chaves-Moreno D, van Elsas JD (2015) Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw. Sci Rep 5:13845. doi:10.1038/13845

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston ER, Rodriguez RL, Luo C et al (2016) Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem. Front Microbiol 7:579. doi:10.3389/fmicb.2016.00579

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung J, Yeom J, Kim J et al (2011) Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils. Res Microbiol 162:1018–1026

    Article  CAS  PubMed  Google Scholar 

  • Kang HS, Brady SF (2014) Mining soil metagenomes to better understand the evolution of natural product structural diversity: pentangular polyphenols as a case study. J Am Chem Soc 136:18111–18119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Kwon EJ, Kim SK et al (2010) Molecular cloning and characterization of a novel family VIII alkaline esterase from a compost metagenomic library. Biochem Biophys Res Commun 393:45–49

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Konneke M, Bernhard AE, de la Torre JR et al (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  CAS  Google Scholar 

  • Ladha JK, Reddy PM (eds) (2000) The quest for nitrogen fixation in rice. IRRI, Los Banos

    Google Scholar 

  • Lam KN, Charles TC (2015) Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries. Microbiome 3:22. doi:10.1186/s40168/015/0086/5

    Article  PubMed  PubMed Central  Google Scholar 

  • Le PT, Makhalanyane TP, Guerrero LD et al (2016) Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts. Genome Biol Evol 8:2737–2747

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Yeo YS, Lee JH et al (2008) Identification of a novel 4-hydroxyphenylpyruvate dioxygenase from the soil metagenome. Biochem Biophys Res Commun 370:322–326

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Hong KS, Malhotra S et al (2010) A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl Microbiol Biotechnol 88:1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Won K, Lim HK et al (2004) Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl Microbiol Biotechnol 65:720–726

    Article  CAS  PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Leveau JHJ (2007) The magic and menace of metagenomics-prospects for the study of plant growth promoting rhizobacteria. Eur J Plant Pathol 119:279–300

    Article  CAS  Google Scholar 

  • Li G, Wang K, Liu YH (2008) Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the metagenome. Microb Cell Factories 7:38. doi:10.1186/1475-2859-7-38

    Article  CAS  Google Scholar 

  • Li YC, Li Z, Li ZW et al (2016) Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by highthroughput pyrosequencing approach. J Appl Microbiol 121:787–799

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wd L, Xl Z et al (2011) Cloning and functional characterization of a novel endo-β -1, 4-glucanase gene from a soil-derived metagenomic library. Appl Microbiol Biotechnol 89:1083–1092

    Article  CAS  PubMed  Google Scholar 

  • Mai Z, Su H, Yang J et al (2014) Cloning and characterization of a novel GH44 family endoglucanase from mangrove soil metagenomic library. Biotechnol Lett 36:1701–1709

    Article  CAS  PubMed  Google Scholar 

  • Manz W, Amann R, Ludwig W et al (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  • Matsuzawa T, Kimura N, Suenaga H et al (2016) Screening, identification, and characterization of α-xylosidase from a soil metagenome. J Biosci Bioeng 122:393–399

    Article  CAS  PubMed  Google Scholar 

  • Mayumi D, Akutsu-Shigeno Y, Uchiyama H et al (2008) Identification and characterization of novel poly (DL-lactic acid) depolymerases from metagenome. Appl Microbiol Biotechnol 79:743–750

    Article  CAS  PubMed  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA et al (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Raaijmakers JM (2015) Cross-kingdom similarities in microbiome functions. ISME J 9:1905–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9:386. doi:10.1186/1471-2105-9-386

    Article  CAS  Google Scholar 

  • Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujumdar RB, Ernst LA, Mujumdar SR et al (1989) Cyanine dye labeling reagents containing isothiocyanate groups. Cytometry 10:11–19

    Article  CAS  PubMed  Google Scholar 

  • Musilova L, Ridl J, Polivkova M et al (2016) Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. Int J Mol Sci 17:1205. doi:10.3390/ijms17081205

    Article  PubMed Central  Google Scholar 

  • Nacke H, Engelhaupt M, Brady S et al (2012) Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotechnol Lett 34:663–675

    Article  CAS  PubMed  Google Scholar 

  • Nagayama H, Sugawara T, Endo R et al (2015) Isolation of oxygenase genes for indigo-forming activity from an artificially polluted soil metagenome by functional screening using Pseudomonas putida strains as hosts. Appl Microbiol Biotechnol 99:4453–4470

    Article  CAS  PubMed  Google Scholar 

  • Nelson KE (2013) Microbiomes. Microb Ecol 65:916–919

    Article  CAS  PubMed  Google Scholar 

  • Noyce GL, Winsborough C, Fulthorpe R et al (2016) The microbiomes and metagenomes of forest biochars. Sci Rep 6:26425. doi:10.1038/srep26425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orellana LH, Rodriguez-R LM, Higgins S et al (2014) Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. MBio 5:e01193–e01114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou Q, Liu Y, Deng J et al (2015) A novel D-amino acid oxidase from a contaminated agricultural soil metagenome and its characterization. Antonie Van Leeuwenhoek 107:1615–1623

    Article  CAS  PubMed  Google Scholar 

  • Pace NR, Stahl DA, Lane DJ et al (eds) (1986) Analyzing natural microbial populations by rRNA sequences. ASM News 51:4–12

    Google Scholar 

  • Pang H, Zhang P, Duan CJ et al (2009) Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr Microbiol 58:404–408

    Article  CAS  PubMed  Google Scholar 

  • Parsley LC, Linneman J, Goode AM et al (2011) Polyketide synthase pathways identified from a metagenomic library are derived from soil Acidobacteria. FEMS Microbiol Ecol 78:176–187

    Article  CAS  PubMed  Google Scholar 

  • Patel V, Sharma A, Lal R et al (2016) Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates. BMC Microbiol 16:50. doi:10.1186/s12866-016-0669-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perry JA, Wright GD (2013) The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front Microbiol 4:138. doi:10.3389/00138

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV et al (2016) Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library. FEMS Microbiol Ecol 92:fiw046. doi:10.1093/femsec/fiw046

    Article  PubMed  CAS  Google Scholar 

  • Pindi PK, Srinath RR, Pavankumar TL et al (2014) Isolation and characterization of novel lipase gene LipHim1 from the DNA isolated from soil samples. J Microbiol 52:384–388

    Article  CAS  PubMed  Google Scholar 

  • Purohit MK, Singh SP (2013) A metagenomic alkaline protease from saline habitat: cloning, over-expression and functional attributes. Int J Biol Macromol 53:138–143

    Article  CAS  PubMed  Google Scholar 

  • Rastogi G, Stetler LD, Peyton BM et al (2009) Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake gold mine, South Dakota, USA. J Microbiol 47:371–384

    Article  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM et al (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  CAS  PubMed  Google Scholar 

  • Roller C, Wagner M, Amann R et al (1994) In situ probing of gram-positive bacteria with a high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140:2849–2858

    Article  CAS  PubMed  Google Scholar 

  • Rousk J, Baath E, Brookes PC et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666

    Article  CAS  PubMed  Google Scholar 

  • Schallmey M, Ly A, Wang C et al (2011) Harvesting of novel polyhydroxyalkanaote (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening. FEMS Microbiol Lett 321:150–156

    Article  CAS  PubMed  Google Scholar 

  • Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. doi:10.1186/gb-2011-12-6- r60

    Article  PubMed  PubMed Central  Google Scholar 

  • Segata N, Waldron L, Ballarini A et al (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siles JA, Cajthaml T, Minerbi S et al (2016) Effect of altitude and season on microbial activity, abundance and community structure in alpine forest soils. FEMS Microbiol Ecol 92. doi:10.1093/femsec/fiw008

  • Sorensen J, Nicolaisen MH, Ron E et al (2009) Molecular tools in rhizosphere microbiology-from single-cell to whole-community analysis. Plant Soil 321:483–512

    Article  CAS  Google Scholar 

  • Souza RC, Mendes IC, Reis-Junior FB et al (2016) Shifts in taxonomic and functional microbial diversity with agriculture: how fragile is the Brazilian cerrado? BMC Microbiol 16:42. doi:10.1186/s12866-016-0657-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stahl DA, Amann RI (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 205–248

    Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  CAS  PubMed  Google Scholar 

  • Stein JL, Marsh TL, Wu KY et al (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase pair genome fragment front a planktonic marine archaeon. J Bacteriol 178:591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao W, Lee MH, Yoon MY et al (2011) Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase. J Microbiol Biotechnol 21:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Mooij MJ, Barret M et al (2014) Identification of novel phytase genes from an agricultural soil-derived metagenome. J Microbiol Biotechnol 24:113–118

    Article  CAS  PubMed  Google Scholar 

  • Tardy V, Chabbi A, Charrier X et al (2015) Land use history shifts in situ fungal and bacterial successions following wheat straw input into the soil. PLoS One 10:e0130672. doi:10.1371/ journal.pone.0130672

    Google Scholar 

  • Tsai YL, Olson BH (1992) Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol 58:2292–2295

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Hellemond EW, Janssen DB, Fraaije MW (2007) Discovery of a novel styrene monooxygenase originating from the metagenome. Appl Environ Microbiol 73:5832–5839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venieraki A, Dimou M, Pergalis P et al (2011) The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microb Ecol 61:277–285

    Article  PubMed  Google Scholar 

  • Verma D, Kawarabayasi Y, Miyazaki K et al (2013) Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS One 8:e52459. doi:10.1371/0052459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigliotta G, Matrella S, Cicatelli A et al (2016) Effects of heavy metals and chelants on phytoremediation capacity and on rhizobacterial communities of maize. J Environ Manag 179:93–102

    Article  CAS  Google Scholar 

  • Wang K, Li G, Yu SQ et al (2010) A novel metagenome-derived β -galactosidase: gene cloning, overexpression, purification and characterization. Appl Microbiol Biotechnol 88:155–165

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Quensen JF, Fish JA et al (2013) Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using Framebot, a new informatics tool. mBio 4(5):e00592–13. doi:10.1128/mBio.00592-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Q, Fish JA, Gilman M et al (2015) Xander: employing a novel method for efficient gene-targeted metagenomic assembly. Microbiome 3:32. doi:10.1186/s40168-015-0093-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei P, Bai L, Song W et al (2009) Characterization of two soil metagenome-derived lipases with high specificity for p-nitrophenyl palmitate. Arch Microbiol 191:233–240

    Article  CAS  PubMed  Google Scholar 

  • Werner J, Ferrer M, Michel G et al (2014) Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader. Environ Microbiol 16:2525–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352. doi.org/10.1371/journal.pcbi.1000352

    Google Scholar 

  • Wolińska A, Kuźniar A, Zielenkiewicz U et al (2017) Metagenomic analysis of some potential nitrogen-fixing bacteria in arable soils at different formation processes. Microb Ecol 73:162–176

    Article  PubMed  CAS  Google Scholar 

  • Xun W, Xu Z, Li W et al (2016) Long-term organic-inorganic fertilization ensures great soil productivity and bacterial diversity after natural-to-agricultural ecosystem conversion. J Microbiol 54:611–617

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Gao Y, Wang S et al (2014) The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J 8:430–440

    Article  CAS  PubMed  Google Scholar 

  • Yasir M, Azhar EI, Khan I et al (2015) Composition of soil microbiome along elevation gradients in southwestern highlands of Saudi Arabia. BMC Microbiol 15:65. doi:10.1186/s12866-015-0398-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye M, Li G, Liang WQ et al (2010) Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and highly soluble expression. Appl Microbiol Biotechnol 87:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Schoondermark-Stolk SA, Brodie EL et al (2009) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Niu J, Ren Y et al (2015) An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci Rep:5. doi:10.1038/srep14266

  • Yun J, Kang S, Park S, Yoon H, Kim MJ et al (2004) Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol 70:7229–7235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaprasis A, Liu YJ, Liu SJ et al (2010) Abundance of novel and diverse tfdA-like genes, encoding putative phenoxyalkanoic acid herbicide-degrading dioxygenases, in soil. Appl Environ Microbiol 76:119–128

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Wang X, Wei W et al (2016) A novel efficient β-glucanase from a paddy soil microbial metagenome with versatile activities. Biotechnol Biofuels 9:36. doi:10.1186/s13068-016-0449-6

  • Zwolinski MD (2007) DNA sequencing: strategies for soil microbiology. Soil Sci Soc Am J 71:592–600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

VK is grateful to the Indian Council of Agricultural Research (ICAR), New Delhi, for the award of Senior Research Fellowship in a research project. Research in the area of PGPR is partly supported by a research grant sanctioned to AK by the Indian Council of Agricultural Research, Government of India, New Delhi (NBAIM/ AMAAS/2014-17/PF/4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kumar, V., Singh, A., Tyagi, M.B., Kumar, A. (2017). Microbial Community Composition and Functions Through Metagenomics. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_32

Download citation

Publish with us

Policies and ethics