Skip to main content

Abstract

In the last years, organic photovoltaics have moved from a lab curiosity to a commercially viable technology. In this chapter, we consider organic photovoltaics based on oligomers (“small molecules”) which are deposited by vacuum sublimation. While the physics of the small molecule materials is in many ways very similar to those of polymer organic materials, there are significant differences in materials synthesis, processing, and device concepts. We review a few classes of small molecule solar cell materials and discuss their properties in devices. We discuss device concepts for small molecule organic solar cells, in particular pin devices based on doped transport layers and cascade designs. We point out the points where devices can be improved and describe paths to higher efficiencies, including multi-junction devices which can be very well realized with small molecule organic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183. doi:10.1063/1.96937

    Article  Google Scholar 

  2. Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913

    Article  Google Scholar 

  3. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541. doi:10.1038/347539a0

    Article  Google Scholar 

  4. Himmelberger S, Vandewal K, Fei Z, Heeney M, Salleo A (2014) Role of molecular weight distribution on charge transport in semiconducting polymers. Macromolecules 47:7151–7157. doi:10.1021/ma501508j

    Article  Google Scholar 

  5. Lunt RR, Giebink NC, Belak AA, Benziger JB, Forrest SR (2009) Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J Appl Phys 105:53711. doi:10.1063/1.3079797

    Article  Google Scholar 

  6. Hiramoto M, Fujiwara H, Yokoyama M (1992) p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments. J Appl Phys 72:3781. doi:10.1063/1.352274

    Article  Google Scholar 

  7. Würfel P (2009) Physics of solar cells: from basic principles to advanced concepts. Wiley-VCH

    Google Scholar 

  8. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1:15027. doi:10.1038/nenergy.2015.27

    Article  Google Scholar 

  9. Drechsel J, Männig B, Kozlowski F, Gebeyehu D, Werner A, Koch M, Leo K, Pfeiffer M (2004) High efficiency organic solar cells based on single or multiple PIN structures. Thin Solid Films 451–452:515–517. doi:10.1016/j.tsf.2003.11.044

    Article  Google Scholar 

  10. (2004) Organic thin-film photodiodes

    Google Scholar 

  11. Israelachvili JN (2011) Intermolecular and surface forces. Academic Press, San Diego, Calif

    Google Scholar 

  12. Pope M (1999) Electronic processes in organic crystals and polymers, 2nd edn. Oxford University Press, New York

    Google Scholar 

  13. Silinsh E (1994) Organic molecular crystals: interaction, localization, and transport phenomena. American Institute of Physics, New York

    Google Scholar 

  14. Street R, Northrup J, Salleo A (2005) Transport in polycrystalline polymer thin-film transistors. Phys Rev B. doi:10.1103/PhysRevB.71.165202

    Google Scholar 

  15. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1492–1505. doi:10.1103/PhysRev.109.1492

  16. Brédas J-L, Calbert JP, da Silva Filho DA, Cornil J (2002) Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc Natl Acad Sci 99:5804–5809

    Article  Google Scholar 

  17. Rivnay J, Mannsfeld SCB, Miller CE, Salleo A, Toney MF (2012) Determination of organic semiconductor microstructure from the molecular to device scale. Chem Rev 112:5488

    Article  Google Scholar 

  18. Peumans P, Forrest SR (2001) Very-high-efficiency double-heterostructure copper phthalocyanine/C[sub 60] photovoltaic cells. Appl Phys Lett 79:126. doi:10.1063/1.1384001

    Article  Google Scholar 

  19. Noriega-Manez RJ (2012) Chain conformation and disorder in high mobility semiconducting polymers: understanding charge transport in complex microstructures. Stanford University

    Google Scholar 

  20. Peumans P, Forrest SR (2004) Separation of geminate charge-pairs at donor–acceptor interfaces in disordered solids. Chem Phys Lett 398:27–31. doi:10.1016/j.cplett.2004.09.030

    Article  Google Scholar 

  21. Gregg BA (2003) Excitonic solar cells. J Phys Chem B 107:4688–4698. doi:10.1021/jp022507x

    Article  Google Scholar 

  22. Bässler H, Köhler A (2011) Charge transport in organic semiconductors. In: Metzger RM (ed) Unimolecular supramol. Electron. I. Springer, Berlin, Heidelberg, pp 1–65

    Google Scholar 

  23. Zhu X-Y, Yang Q, Muntwiler M (2009) Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc Chem Res 42:1779–1787. doi:10.1021/ar800269u

    Article  Google Scholar 

  24. Braun CL (1984) Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J Chem Phys 80:4157. doi:10.1063/1.447243

    Article  Google Scholar 

  25. Hinderhofer A, Schreiber F (2012) Organic-organic heterostructures: concepts and applications. ChemPhysChem 13:628–643. doi:10.1002/cphc.201100737

    Article  Google Scholar 

  26. Bernstein J (2002) Polymorphism in molecular crystals. Oxford University Press, Oxford Clarendon Press, New York

    Google Scholar 

  27. Forrest SR (1997) Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev 97:1793–1896. doi:10.1021/cr941014o

    Article  Google Scholar 

  28. Kadish KM, Smith KM, Guilard R (2000) The porphyrin handbook. Academic Press, San Diego

    Google Scholar 

  29. Robbie K, Sit JC, Brett MJ (1998) Advanced techniques for glancing angle deposition. J Vac Sci Technol B 16:1115–1122

    Article  Google Scholar 

  30. Rand BP, Cheyns D, Vasseur K, Giebink NC, Mothy S, Yi Y, Coropceanu V, Beljonne D, Cornil J, Brédas J-L, Genoe J (2012) The impact of molecular orientation on the photovoltaic properties of a phthalocyanine/fullerene heterojunction. Adv Funct Mater 22:2987–2995. doi:10.1002/adfm.201200512

    Article  Google Scholar 

  31. Moench T, Friederich P, Holzmueller F, Rutkowski B, Benduhn J, Strunk T, Koerner C, Vandewal K, Czyrska-Filemonowicz A, Wenzel W, Leo K (2015) Influence of meso and nanoscale structure on the properties of highly efficient small molecule solar cells. Adv Energy Mater. doi:10.1002/aenm.201501280

    Google Scholar 

  32. Zhang Y, Diao Y, Lee H, Mirabito TJ, Johnson RW, Puodziukynaite E, John J, Carter KR, Emrick T, Mannsfeld SCB, Briseno AL (2014) Intrinsic and extrinsic parameters for controlling the growth of organic single-crystalline nanopillars in photovoltaics. Nano Lett 5547–5554. doi:10.1021/nl501933q

  33. Koerner C, Elschner C, Miller NC, Fitzner R, Selzer F, Reinold E, Bäuerle P, Toney MF, McGehee MD, Leo K, Riede M (2012) Probing the effect of substrate heating during deposition of DCV4T:C60 blend layers for organic solar cells. Org Electron 13:623–631. doi:10.1016/j.orgel.2011.12.017

    Article  Google Scholar 

  34. Pfuetzner S, Mickel C, Jankowski J, Hein M, Meiss J, Schuenemann C, Elschner C, Levin AA, Rellinghaus B, Leo K, Riede M (2011) The influence of substrate heating on morphology and layer growth in C60:ZnPc bulk heterojunction solar cells. Org Electron 12:435. doi:10.1016/j.orgel.2010.12.007

    Article  Google Scholar 

  35. Schünemann C, Wynands D, Wilde L, Hein M, Pfützner S, Elschner C, Eichhorn K-J, Leo K, Riede M (2012) Phase separation analysis of bulk heterojunctions in small-molecule organic solar cells using zinc-phthalocyanine and C60. Phys Rev B. doi:10.1103/PhysRevB.85.245314

    Google Scholar 

  36. Hawkeye MM, Brett MJ (2007) Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. J Vac Sci Technol Vac Surf Film 25:1317. doi:10.1116/1.2764082

    Article  Google Scholar 

  37. Li N, Forrest SR (2009) Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition. Appl Phys Lett 95:123309. doi:10.1063/1.3236838

    Article  Google Scholar 

  38. Kurrle D, Pflaum J (2008) Exciton diffusion length in the organic semiconductor diindenoperylene. Appl Phys Lett 92:133306. doi:10.1063/1.2896654

    Article  Google Scholar 

  39. Yang J, Yan D, Jones TS (2015) Molecular template growth and its applications in organic electronics and optoelectronics. Chem Rev 115:5570–5603. doi:10.1021/acs.chemrev.5b00142

    Article  Google Scholar 

  40. Kaji T, Zhang M, Nakao S, Iketaki K, Yokoyama K, Tang CW, Hiramoto M (2011) Co-evaporant induced crystalline donor: acceptor blends in organic solar cells. Adv Mater 23:3320–3325. doi:10.1002/adma.201101305

    Article  Google Scholar 

  41. Holzmueller F, Wilde L, Wölzl F, Koerner C, Vandewal K, Leo K (2015) Co-evaporant induced crystallization of zinc phthalocyanine:C60 blends for solar cells. Org Electron 27:133–136. doi:10.1016/j.orgel.2015.08.031

    Article  Google Scholar 

  42. André MBJCWCCJJ (1997) Effects of solvent on the morphology and crystalline structure of lithium phthalocyanine thin films and powders. Thin Solid Films. doi:10.1016/s0040-6090(96)09087-6

    Google Scholar 

  43. Zimmerman JD, Xiao X, Renshaw CK, Wang S, Diev VV, Thompson ME, Forrest SR (2012) Independent control of bulk and interfacial morphologies of small molecular weight organic heterojunction solar cells. Nano Lett 12:4366–4371. doi:10.1021/nl302172w

    Article  Google Scholar 

  44. Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell TP, Chen Y (2015) A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J Am Chem Soc 137:3886–3893. doi:10.1021/jacs.5b00305

    Article  Google Scholar 

  45. Heliatek sets new organic photovoltaic world record efficiency of 13.2%

    Google Scholar 

  46. Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41:4245. doi:10.1039/c2cs15313k

    Article  Google Scholar 

  47. Chen W, Huang H, Chen S, Huang YL, Gao XY, Wee ATS (2008) Molecular orientation-dependent ionization potential of organic thin films. Chem Mater 20:7017–7021. doi:10.1021/cm8016352

    Article  Google Scholar 

  48. Cnops K, Rand BP, Cheyns D, Verreet B, Empl MA, Heremans P (2014) 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat Commun. doi:10.1038/ncomms4406

  49. Kronenberg NM, Steinmann V, Bürckstümmer H, Hwang J, Hertel D, Würthner F, Meerholz K (2010) Direct comparison of highly efficient solution- and vacuum-processed organic solar cells based on merocyanine dyes. Adv Mater 22:4193–4197. doi:10.1002/adma.201000800

    Article  Google Scholar 

  50. Kronenberg NM (2010) Organic bulk heterojunction solar cells based on merocyanine colorants. Universität zu Köln

    Google Scholar 

  51. Steinmann V, Kronenberg NM, Lenze MR, Graf SM, Hertel D, Meerholz K, Bürckstümmer H, Tulyakova EV, Würthner F (2011) Simple, highly efficient vacuum-processed bulk heterojunction solar cells based on merocyanine dyes. Adv Energy Mater 1:888–893. doi:10.1002/aenm.201100283

    Article  Google Scholar 

  52. Bürckstümmer H, Kronenberg NM, Gsänger M, Stolte M, Meerholz K, Würthner F (2010) Tailored merocyaninedyes for solution-processed BHJ solar cells. J Mater Chem 20:240–243. doi:10.1039/B916181C

    Article  Google Scholar 

  53. McKeown NB. Phthalocyanine materials: synthesis, structure and function. Cambridge University Press

    Google Scholar 

  54. Bao Z, Lovinger AJ, Dodabalapur A (1997) Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors. Adv Mater 9:42–44

    Article  Google Scholar 

  55. Faulkner EB, Schwartz RJ (2009) High performance pigments. Wiley

    Google Scholar 

  56. Warner M, Din S, Tupitsyn IS, Morley GW, Stoneham AM, Gardener JA, Wu Z, Fisher AJ, Heutz S, Kay CWM, Aeppli G (2013) Potential for spin-based information processing in a thin-film molecular semiconductor. Nature 503:504–508. doi:10.1038/nature12597

    Article  Google Scholar 

  57. Schünemann C, Elschner C, Levin AA, Levichkova M, Leo K, Riede M (2011) Zinc phthalocyanine—influence of substrate temperature, film thickness, and kind of substrate on the morphology. Thin Solid Films 519:3939–3945. doi:10.1016/j.tsf.2011.01.356

    Article  Google Scholar 

  58. Tress W, Leo K, Riede M (2013) Dominating recombination mechanisms in organic solar cells based on ZnPc and C60. Appl Phys Lett 102:163901. doi:10.1063/1.4802276

    Article  Google Scholar 

  59. Petritsch K, Friend RH, Lux A, Rozenberg G, Moratti SC, Holmes AB (1999) Liquid crystalline phthalocyanines in organic solar cells. Synth Met 102:1776–1777

    Article  Google Scholar 

  60. Tietze ML, Tress W, Pfützner S, Schünemann C, Burtone L, Riede M, Leo K, Vandewal K, Olthof S, Schulz P, Kahn A (2013) Correlation of open-circuit voltage and energy levels in zinc-phthalocyanine: C60 bulk heterojunction solar cells with varied mixing ratio. Phys Rev B. doi:10.1103/PhysRevB.88.085119

    Google Scholar 

  61. Meiss J, Merten A, Hein M, Schuenemann C, Schäfer S, Tietze M, Uhrich C, Pfeiffer M, Leo K, Riede M (2012) Fluorinated zinc phthalocyanine as donor for efficient vacuum-deposited organic solar cells. Adv Funct Mater 22:405–414. doi:10.1002/adfm.201101799

    Article  Google Scholar 

  62. Brendel M, Krause S, Steindamm A, Topczak AK, Sundarraj S, Erk P, Höhla S, Fruehauf N, Koch N, Pflaum J (2015) The effect of gradual fluorination on the properties of F n ZnPc thin films and F n ZnPc/C60 bilayer photovoltaic cells. Adv Funct Mater 25:1565–1573. doi:10.1002/adfm.201404434

    Article  Google Scholar 

  63. Hein C, Mankel E, Mayer T, Jaegermann W (2010) Engineering the electronic structure of the ZnPc/C60 heterojunction by temperature treatment. Sol Energy Mater Sol Cells 94:662–667. doi:10.1016/j.solmat.2009.10.022

    Article  Google Scholar 

  64. Tietze ML (2014) Molecular doping processes in organic semiconductors investigated by photoelectron spectroscopy. TU Dresden

    Google Scholar 

  65. Gao W, Kahn A (2002) Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: interface versus bulk effects. Org Electron 3:53–63

    Article  Google Scholar 

  66. Ghani F, Kristen J, Riegler H (2012) Solubility properties of unsubstituted metal phthalocyanines in different types of solvents. J Chem Eng Data 57:439–449. doi:10.1021/je2010215

    Article  Google Scholar 

  67. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932. doi:10.1021/cr078381n

    Article  Google Scholar 

  68. Rousseau T, Cravino A, Bura T, Ulrich G, Ziessel R, Roncali J (2009) BODIPY derivatives as donor materials for bulk heterojunction solar cells. Chem Commun 1673. doi:10.1039/b822770e

  69. Meerheim R, Körner C, Oesen B, Leo K (2016) 10.4% efficient triple organic solar cells containing near infrared absorbers. Appl Phys Lett. doi:10.1063/1.4943653

  70. Mueller T, Gresser R, Leo K, Riede M (2012) Organic solar cells based on a novel infrared absorbing aza-bodipy dye. Sol Energy Mater Sol Cells 99:176–181. doi:10.1016/j.solmat.2011.11.006

    Article  Google Scholar 

  71. Gresser R, Hummert M, Hartmann H, Leo K, Riede M (2011) Synthesis and characterization of near-infrared absorbing benzannulated Aza-BODIPY dyes. Chem Eur J 17:2939–2947. doi:10.1002/chem.201002941

    Article  Google Scholar 

  72. Xiao L, Wang H, Gao K, Li L, Liu C, Peng X, Wong W-Y, Wong W-K, Zhu X (2015) A-D-A type small molecules based on boron dipyrromethene for solution-processed organic solar cells. Chem Asian J 10:1513–1518. doi:10.1002/asia.201500382

    Article  Google Scholar 

  73. Kraner S, Widmer J, Benduhn J, Hieckmann E, Jägeler-Hoheisel T, Ullbrich S, Schütze D, Sebastian Radke K, Cuniberti G, Ortmann F, Lorenz-Rothe M, Meerheim R, Spoltore D, Vandewal K, Koerner C, Leo K (2015) Influence of side groups on the performance of infrared absorbing aza-BODIPY organic solar cells: performance of IR absorbing aza-BODIPY organic solar cells. Phys Status Solidi 212:2747–2753. doi:10.1002/pssa.201532385

    Article  Google Scholar 

  74. Dürr AC, Nickel B, Sharma V, Täffner U, Dosch H (2006) Observation of competing modes in the growth of diindenoperylene on SiO2. Thin Solid Films 503:127–132. doi:10.1016/j.tsf.2005.11.115

    Article  Google Scholar 

  75. Wagner J, Gruber M, Hinderhofer A, Wilke A, Bröker B, Frisch J, Amsalem P, Vollmer A, Opitz A, Koch N, Schreiber F, Brütting W (2010) High fill factor and open circuit voltage in organic photovoltaic cells with diindenoperylene as donor material. Adv Funct Mater 20:4295–4303. doi:10.1002/adfm.201001028

    Article  Google Scholar 

  76. Schünemann C (2012) Organic small molecules: correlation between molecular structure, thin film growth, and solar cell performance. Technische Universität Dresden

    Google Scholar 

  77. Griffith OL, Liu X, Amonoo JA, Djurovich PI, Thompson ME, Green PF, Forrest SR (2015) Charge transport and exciton dissociation in organic solar cells consisting of dipolar donors mixed with C 70. Phys Rev B. doi:10.1103/PhysRevB.92.085404

    Google Scholar 

  78. Grob S (2016) Effect of morphology on molecular organic solar cells. PhD thesis

    Google Scholar 

  79. Yokoyama D, Qiang Wang Z, Pu Y-J, Kobayashi K, Kido J, Hong Z (2012) High-efficiency simple planar heterojunction organic thin-film photovoltaics with horizontally oriented amorphous donors. Sol Energy Mater Sol Cells 98:472–475. doi:10.1016/j.solmat.2011.10.014

    Article  Google Scholar 

  80. Hirade M, Adachi C (2011) Small molecular organic photovoltaic cells with exciton blocking layer at anode interface for improved device performance. Appl Phys Lett 99:153302. doi:10.1063/1.3650472

    Article  Google Scholar 

  81. New material concepts for organic solar cells

    Google Scholar 

  82. Karl N (2003) Charge carrier transport in organic semiconductors. doi:10.1016/s0379-6779(02)00398-3

    Google Scholar 

  83. Horlet M, Kraus M, Brütting W, Opitz A (2011) Diindenoperylene as ambipolar semiconductor: Influence of electrode materials and mobility asymmetry in organic field-effect transistors. Appl Phys Lett 98:233304. doi:10.1063/1.3598423

    Article  Google Scholar 

  84. Boukhili W, Mahdouani M, Bourguiga R, Puigdollers J (2016) Temperature dependence of the electrical properties of organic thin-film transistors based on tetraphenyldibenzoperiflanthene deposited at different substrate temperatures: experiment and modeling. Microelectron Eng 150:47–56. doi:10.1016/j.mee.2015.11.006

    Article  Google Scholar 

  85. Sakai J, Taima T, Saito K (2008) Efficient oligothiophene:fullerene bulk heterojunction organic photovoltaic cells. Org Electron 9:582–590. doi:10.1016/j.orgel.2008.03.008

    Article  Google Scholar 

  86. Bormann L, Nehm F, Weiß N, Nikolis VC, Selzer F, Eychmüller A, Müller-Meskamp L, Vandewal K, Leo K (2016) Degradation of sexithiophene cascade organic solar cells. Adv Energy Mater 6:1502432. doi:10.1002/aenm.201502432

    Article  Google Scholar 

  87. Schulze K, Uhrich C, Schüppel R, Leo K, Pfeiffer M, Brier E, Reinold E, Bäuerle P (2006) Efficient vacuum-deposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C60. Adv Mater 18:2872–2875. doi:10.1002/adma.200600658

    Article  Google Scholar 

  88. Wynands D, Levichkova M, Leo K, Uhrich C, Schwartz G, Hildebrandt D, Pfeiffer M, Riede M (2010) Increase in internal quantum efficiency in small molecular oligothiophene:C[sub 60] mixed heterojunction solar cells by substrate heating. Appl Phys Lett 97:73503. doi:10.1063/1.3475766

    Article  Google Scholar 

  89. Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Körner C, Leo K, Riede M, Weil M, Tsaryova O, Weiß A, Uhrich C, Pfeiffer M, Bäuerle P (2011) Dicyanovinyl-substituted oligothiophenes: structure-property relationships and application in vacuum-processed small molecule organic solar cells. Adv Funct Mater 21:897–910. doi:10.1002/adfm.201001639

    Article  Google Scholar 

  90. Fitzner R, Mena-Osteritz E, Mishra A, Schulz G, Reinold E, Weil M, Körner C, Ziehlke H, Elschner C, Leo K, Riede M, Pfeiffer M, Uhrich C, Bäuerle P (2012) Correlation of π-conjugated oligomer structure with film morphology and organic solar cell performance. J Am Chem Soc 134:11064–11067. doi:10.1021/ja302320c

    Article  Google Scholar 

  91. Meerheim R, Körner C, Leo K (2014) Highly efficient organic multi-junction solar cells with a thiophene based donor material. Appl Phys Lett 105:63306. doi:10.1063/1.4893012

    Article  Google Scholar 

  92. Körner C (2013) Oligothiophene materials for organic solar cells—photophysics and device properties. TU Dresden

    Google Scholar 

  93. Meerheim R, Körner C, Leo K (2014) Highly efficient organic multi-junction solar cells with a thiophene based donor material. Appl Phys Lett 105:63306. doi:10.1063/1.4893012

    Article  Google Scholar 

  94. Koerner C, Ziehlke H, Gresser R, Fitzner R, Reinold E, Bäuerle P, Leo K, Riede M (2012) Temperature activation of the photoinduced charge carrier generation efficiency in quaterthiophene: C 60 mixed films. J Phys Chem C 116:25097–25105. doi:10.1021/jp307582a

    Article  Google Scholar 

  95. Koerner C, Hein MP, Kažukauskas V, Sakavičius A, Janonis V, Fitzner R, Bäuerle P, Leo K, Riede M (2014) Correlation between temperature activation of charge-carrier generation efficiency and hole mobility in small-molecule donor materials. ChemPhysChem 15:1049–1055. doi:10.1002/cphc.201400030

    Article  Google Scholar 

  96. Schueppel R, Schmidt K, Uhrich C, Schulze K, Wynands D, Brédas JL, Brier E, Reinold E, Bu H-B, Baeuerle P, Maennig B, Pfeiffer M, Leo K (2008) Optimizing organic photovoltaics using tailored heterojunctions: a photoinduced absorption study of oligothiophenes with low band gaps. Phys Rev B 77:85311. doi:10.1103/PhysRevB.77.085311

    Article  Google Scholar 

  97. Koerner C, Ziehlke H, Fitzner R, Riede M, Mishra A, Bäuerle P, Leo K (2017) Dicyanovinylene-substituted oligothiophenes for organic solar cells. In: Leo K (ed) Elementary processes in organic photovoltaics. Springer International Publishing, pp 51–75

    Google Scholar 

  98. Schueppel R, Uhrich C, Pfeiffer M, Leo K, Brier E, Reinold E, Baeuerle P (2007) Enhanced photogeneration of triplet excitons in an oligothiophene-fullerene blend. ChemPhysChem 8:1497–1503. doi:10.1002/cphc.200700306

    Article  Google Scholar 

  99. Ziehlke H, Fitzner R, Koerner C, Gresser R, Reinold E, Bäuerle P, Leo K, Riede MK (2011) Side chain variations on a series of dicyanovinyl-terthiophenes: a photoinduced absorption study. J Phys Chem A 115:8437–8446. doi:10.1021/jp203420m

    Article  Google Scholar 

  100. Fitzner R, Elschner C, Weil M, Uhrich C, Körner C, Riede M, Leo K, Pfeiffer M, Reinold E, Mena-Osteritz E, Bäuerle P (2012) Interrelation between crystal packing and small-molecule organic solar cell performance. Adv Mater 24:675–680. doi:10.1002/adma.201104439

    Article  Google Scholar 

  101. Schrader M, Fitzner R, Hein M, Elschner C, Baumeier B, Leo K, Riede M, Bäuerle P, Andrienko D (2012) Comparative study of microscopic charge dynamics in crystalline acceptor-substituted oligothiophenes. J Am Chem Soc 134:6052–6056. doi:10.1021/ja300851q

    Article  Google Scholar 

  102. Levichkova M, Wynands D, Levin AA, Walzer K, Hildebrandt D, Pfeiffer M, Janonis V, Pranaitis M, Kažukauskas V, Leo K, Riede M (2011) Dicyanovinyl sexithiophene as donor material in organic planar heterojunction solar cells: Morphological, optical, and electrical properties. Org Electron 12:2243–2252. doi:10.1016/j.orgel.2011.09.022

    Article  Google Scholar 

  103. Wynands D, Levichkova M, Riede M, Pfeiffer M, Baeuerle P, Rentenberger R, Denner P, Leo K (2010) Correlation between morphology and performance of low bandgap oligothiophene:C60 mixed heterojunctions in organic solar cells. J Appl Phys 107:14517. doi:10.1063/1.3271407

    Article  Google Scholar 

  104. Ziehlke H, Burtone L, Koerner C, Fitzner R, Reinold E, Bäuerle P, Leo K, Riede M (2011) Increase of charge carrier lifetime in dicyanovinyl–quinquethiophene: fullerene blends upon deposition on heated substrates. Org Electron 12:2258–2267. doi:10.1016/j.orgel.2011.09.015

    Article  Google Scholar 

  105. Mönch T (2015) Exploring nanoscale properties of organic solar cells. TU Dresden

    Google Scholar 

  106. Steinberger S, Mishra A, Reinold E, Levichkov J, Uhrich C, Pfeiffer M, Bäuerle P (2011) Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes. Chem Commun 47:1982. doi:10.1039/c0cc04541a

    Article  Google Scholar 

  107. Steinberger S, Mishra A, Reinold E, Mena-Osteritz E, Müller H, Uhrich C, Pfeiffer M, Bäuerle P (2012) Synthesis and characterizations of red/near-IR absorbing A-D-A-D-A-type oligothiophenes containing thienothiadiazole and thienopyrazine central units. J Mater Chem 22:2701–2712. doi:10.1039/C2JM13285K

    Article  Google Scholar 

  108. Mishra A, Uhrich C, Reinold E, Pfeiffer M, Bäuerle P (2011) Synthesis and characterization of acceptor-substituted oligothiophenes for solar cell applications. Adv Energy Mater 1:265–273. doi:10.1002/aenm.201100026

    Article  Google Scholar 

  109. Steinberger S, Mishra A, Reinold E, Müller CM, Uhrich C, Pfeiffer M, Bäuerle P (2011) A-D-A-D-A-type oligothiophenes for vacuum-deposited organic solar cells. Org Lett 13:90–93. doi:10.1021/ol102603n

    Article  Google Scholar 

  110. Fitzner R, Mena-Osteritz E, Walzer K, Pfeiffer M, Bäuerle P (2015) A-D-A-Type oligothiophenes for small molecule organic solar cells: extending the π-system by introduction of ring-locked double bonds. Adv Funct Mater 25:1845–1856. doi:10.1002/adfm.201404210

    Article  Google Scholar 

  111. Löbert M, Mishra A, Uhrich C, Pfeiffer M, Bäuerle P (2014) Synthesis and characterization of benzo- and naphtho[2,1-b:3,4-b′]dithiophene-containing oligomers for photovoltaic applications. J Mater Chem C 2:4879. doi:10.1039/c4tc00335g

    Article  Google Scholar 

  112. Yin B, Yang L, Liu Y, Chen Y, Qi Q, Zhang F, Yin S (2010) Solution-processed bulk heterojunction organic solar cells based on an oligothiophene derivative. Appl Phys Lett 97:23303. doi:10.1063/1.3460911

    Article  Google Scholar 

  113. Weidelener M, Wessendorf CD, Hanisch J, Ahlswede E, Götz G, Lindén M, Schulz G, Mena-Osteritz E, Mishra A, Bäuerle P (2013) Dithienopyrrole-based oligothiophenes for solution-processed organic solar cells. Chem Commun 49:10865. doi:10.1039/c3cc46066e

    Article  Google Scholar 

  114. Wessendorf CD, Schulz GL, Mishra A, Kar P, Ata I, Weidelener M, Urdanpilleta M, Hanisch J, Mena-Osteritz E, Lindén M, Ahlswede E, Bäuerle P (2014) Efficiency improvement of solution-processed dithienopyrrole-based A-D-A oligothiophene bulk-heterojunction solar cells by solvent vapor annealing. Adv Energy Mater 4:1400266. doi:10.1002/aenm.201400266

    Article  Google Scholar 

  115. Schulz GL, Urdanpilleta M, Fitzner R, Brier E, Mena-Osteritz E, Reinold E, Bäuerle P (2013) Optimization of solution-processed oligothiophene:fullerene based organic solar cells by using solvent additives. Beilstein J Nanotechnol 4:680–689. doi:10.3762/bjnano.4.77

    Article  Google Scholar 

  116. Schulz GL, Löbert M, Ata I, Urdanpilleta M, Lindén M, Mishra A, Bäuerle P (2015) Functional tuning of A-D-A oligothiophenes: the effect of solvent vapor annealing on blend morphology and solar cell performance. J Mater Chem A 3:13738–13748. doi:10.1039/C5TA02877A

    Article  Google Scholar 

  117. Chen Y, Wan X, Long G (2013) High performance photovoltaic applications using solution-processed small molecules. Acc Chem Res 46:2645–2655. doi:10.1021/ar400088c

    Article  Google Scholar 

  118. Malytskyi V, Simon J-J, Patrone L, Raimundo J-M (2015) Thiophene-based push–pull chromophores for small molecule organic solar cells (SMOSCs). RSC Adv 5:354–397. doi:10.1039/C4RA11664J

    Article  Google Scholar 

  119. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723. doi:10.1063/1.1534621

    Article  Google Scholar 

  120. Owens DW, Aldao CM, Poirier DM, Weaver JH (1995) Charge transfer, doping, and interface morphologies for Al-C60. Phys Rev B 51:17068–17072. doi:10.1103/PhysRevB.51.17068

    Article  Google Scholar 

  121. Furno M, Meerheim R, Hofmann S, Lüssem B, Leo K (2012) Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys Rev B 85:115205. doi:10.1103/PhysRevB.85.115205

    Article  Google Scholar 

  122. Peumans P, Uchida S, Forrest SR (2003) Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425:158. doi:10.1038/nature01949

    Article  Google Scholar 

  123. Pahner P, Kleemann H, Burtone L, Tietze ML, Fischer J, Leo K, Lüssem B (2013) Pentacene Schottky diodes studied by impedance spectroscopy: doping properties and trap response. Phys Rev B 88:195205. doi:10.1103/PhysRevB.88.195205

    Article  Google Scholar 

  124. Blochwitz J, Fritz T, Pfeiffer M, Leo K, Alloway DM, Lee PA, Armstrong NR (2001) Interface electronic structure of organic semiconductors with controlled doping levels. Org Electron 2:97–104. doi:10.1016/S1566-1199(01)00016-7

    Article  Google Scholar 

  125. Pfeiffer M, Leo K, Zhou X, Huang JS, Hofmann M, Werner A, Blochwitz-Nimoth J (2003) Doped organic semiconductors: Physics and application in light emitting diodes. Org Electron 4:89–103. doi:10.1016/j.orgel.2003.08.004

    Article  Google Scholar 

  126. Olthof S, Tress W, Meerheim R, Lüssem B, Leo K (2009) Photoelectron spectroscopy study of systematically varied doping concentrations in an organic semiconductor layer using a molecular p-dopant. J Appl Phys 106:103711. doi:10.1063/1.3259436

    Article  Google Scholar 

  127. Maennig B, Pfeiffer M, Nollau A, Zhou X, Leo K, Simon P (2001) Controlled p-type doping of polycrystalline and amorphous organic layers: self-consistent description of conductivity and field-effect mobility by a microscopic percolation model. Phys Rev B 64:195208. doi:10.1103/PhysRevB.64.195208

    Article  Google Scholar 

  128. Lüssem B, Riede M, Leo K (2012) Doping of organic semiconductors. Phys Status Solidi A 210:9. doi:10.1002/pssa.201228310

    Article  Google Scholar 

  129. Falkenberg C (2011) Optimizing organic solar cells transparent electron transport materials for improving the device performance. Technische Universität Dresden

    Google Scholar 

  130. Pfuetzner S, Petrich A, Malbrich C, Meiss J, Koch M, Riede MK, Pfeiffer M, Leo K (2008) Characterisation of different hole transport materials as used in organic p-i-n solar cells. In: Heremans PL, Muccini M, Meulenkamp EA (eds) Proceedings of the SPIE, p 69991M

    Google Scholar 

  131. Menke T, Ray D, Kleemann H, Hein MP, Leo K, Riede M (2014) Highly efficient p-dopants in amorphous hosts. Org Electron 15:365. doi:10.1016/j.orgel.2013.11.033

    Article  Google Scholar 

  132. Maennig B, Drechsel J, Gebeyehu D, Simon P, Kozlowski F, Werner A, Li F, Grundmann S, Sonntag S, Koch M, Leo K, Pfeiffer M, Hoppe H, Meissner D, Sariciftci NS, Riedel I, Dyakonov V, Parisi J (2004) Organic p-i-n solar cells. Appl Phys A Mater Sci Process 79:1–14. doi:10.1007/s00339-003-2494-9

    Article  Google Scholar 

  133. Falkenberg C, Leo K, Riede MK (2011) Improved photocurrent by using n-doped 2,3,8,9,14,15-hexachloro-5,6,11,12,17,18-hexaazatrinaphthylene as optical spacer layer in p-i-n type organic solar cells. J Appl Phys 110:124509. doi:10.1063/1.3664828

    Article  Google Scholar 

  134. Falkenberg C, Uhrich C, Olthof S, Maennig B, Riede MK, Leo K (2008) Efficient p-i-n type organic solar cells incorporating 1,4,5,8-naphthalenetetracarboxylic dianhydride as transparent electron transport material. J Appl Phys 104:34506. doi:10.1063/1.2963992

    Article  Google Scholar 

  135. El-Khatib N, Boudjema B, Guillaud G, Maitrot M, Chermette H (1988) Theoretical and experimental doping of molecular materials: P and N doping of zinc phthalocyanine. J Less Common Met 143:101–112. doi:10.1016/0022-5088(88)90035-5

    Article  Google Scholar 

  136. Zhou X, Blochwitz J, Pfeiffer M, Nollau A, Fritz T, Leo K (2001) Enhanced hole injection into amorphous hole-transport layers of organic light-emitting diodes using controlled p-type doping. Adv Funct Mater 11:310

    Article  Google Scholar 

  137. Meerheim R, Olthof S, Hermenau M, Scholz S, Petrich A, Tessler N, Solomeshch O, Lüssem B, Riede M, Leo K (2011) Investigation of C60F36 as low-volatility p-dopant in organic optoelectronic devices. J Appl Phys 109:103102. doi:10.1063/1.3590142

    Article  Google Scholar 

  138. Romero DB, Schaer M, Zuppiroli L, Cesar B, François B (1995) Effects of doping in polymer light-emitting diodes. Appl Phys Lett 67:1659. doi:10.1063/1.115048

    Article  Google Scholar 

  139. Lee J-H, Leem D-S, Kim J-J (2008) High performance top-emitting organic light-emitting diodes with copper iodide-doped hole injection layer. Org Electron 9:805–808. doi:10.1016/j.orgel.2008.05.011

    Article  Google Scholar 

  140. Gao C-H, Zhu X-Z, Zhang L, Zhou D-Y, Wang Z-K, Liao L-S (2013) Comparative studies on the inorganic and organic p-type dopants in organic light-emitting diodes with enhanced hole injection. Appl Phys Lett 102:153301. doi:10.1063/1.4802081

    Article  Google Scholar 

  141. Chang C-C, Hsieh M-T, Chen J-F, Hwang S-W, Chen CH (2006) Highly power efficient organic light-emitting diodes with a p-doping layer. Appl Phys Lett 89:253504. doi:10.1063/1.2405856

    Article  Google Scholar 

  142. Tietze ML, Burtone L, Riede M, Lüssem B, Leo K (2012) Fermi level shift and doping efficiency in p-doped small molecule organic semiconductors: a photoelectron spectroscopy and theoretical study. Phys Rev B 86:35320. doi:10.1103/PhysRevB.86.035320

    Article  Google Scholar 

  143. Kido J, Matsumoto T (1998) Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Appl Phys Lett 73:2866–2868. doi:10.1063/1.122612

    Article  Google Scholar 

  144. Parthasarathy G, Shen C, Kahn A, Forrest SR (2001) Lithium doping of semiconducting organic charge transport materials. J Appl Phys 89:4986–4992. doi:10.1063/1.1359161

    Article  Google Scholar 

  145. Nollau A, Pfeiffer M, Fritz T, Leo K (2000) Controlled n-type doping of a molecular organic semiconductor: Naphthalenetetracarboxylic dianhydride (NTCDA) doped with bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF). J Appl Phys 87:4340. doi:10.1063/1.373413

    Article  Google Scholar 

  146. Cotton FA, Gruhn NE, Gu J, Huang P, Lichtenberger DL, Murillo CA, Van Dorn LO, Wilkinson CC (2002) Closed-shell molecules that ionize more readily than cesium. Science 298:1971–1974. doi:10.1126/science.1078721

    Article  Google Scholar 

  147. Wei P, Menke T, Naab BD, Leo K, Riede M, Bao Z (2012) 2-(2-Methoxyphenyl)-1,3-dimethyl-1 H -benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films. J Am Chem Soc 134:3999–4002. doi:10.1021/ja211382x

    Article  Google Scholar 

  148. Menke T, Wei P, Ray D, Kleemann H, Naab BD, Bao Z, Leo K, Riede M (2012) A comparison of two air-stable molecular n-dopants for C60. Org Electron 13:3319–3325. doi:10.1016/j.orgel.2012.09.024

    Article  Google Scholar 

  149. Werner AG, Li F, Harada K, Pfeiffer M, Fritz T, Leo K (2003) Pyronin B as a donor for n-type doping of organic thin films. Appl Phys Lett 82:4495. doi:10.1063/1.1583872

    Article  Google Scholar 

  150. Koech PK, Padmaperuma AB, Wang L, Swensen JS, Polikarpov E, Darsell JT, Rainbolt JE, Gaspar DJ (2010) Synthesis and application of 1,3,4,5,7,8-hexafluorotetracyanonaphthoquinodimethane (F6-TNAP): a conductivity dopant for organic light-emitting devices. Chem Mater 22:3926. doi:10.1021/cm1002737

    Article  Google Scholar 

  151. Murawski C, Fuchs C, Hofmann S, Leo K, Gather MC (2014) Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes. Appl Phys Lett 105:113303. doi:10.1063/1.4896127

    Article  Google Scholar 

  152. Peumans P, Bulović V, Forrest SR (2000) Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl Phys Lett 76:2650. doi:10.1063/1.126433

    Article  Google Scholar 

  153. Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107:1233–1271. doi:10.1021/cr050156n

    Article  Google Scholar 

  154. Timmreck R, Olthof S, Leo K, Riede MK (2010) Highly doped layers as efficient electron–hole recombination contacts for tandem organic solar cells. J Appl Phys 108:33108. doi:10.1063/1.3467786

    Article  Google Scholar 

  155. Hiramoto M, Suezaki M, Yokoyama M (1990) Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell. Chem Lett 19:327–330. doi:10.1246/cl.1990.327

    Article  Google Scholar 

  156. Schlenker CW, Barlier VS, Chin SW, Whited MT, McAnally RE, Forrest SR, Thompson ME (2011) Cascade organic solar cells. Chem Mater 23:4132–4140. doi:10.1021/cm200525h

    Article  Google Scholar 

  157. Barito A, Sykes ME, Huang B, Bilby D, Frieberg B, Kim J, Green PF, Shtein M (2014) Universal design principles for cascade heterojunction solar cells with high fill factors and internal quantum efficiencies approaching 100%. Adv Energy Mater 4:1400216. doi:10.1002/aenm.201400216

    Article  Google Scholar 

  158. Stevens MA, Arango AC (2016) Open-circuit voltage exceeding the outermost HOMO-LUMO offset in cascade organic solar cells. Org Electron 37:80–84. doi:10.1016/j.orgel.2016.06.008

    Article  Google Scholar 

  159. Ichikawa M, Suto E, Jeon H-G, Taniguchi Y (2010) Sensitization of organic photovoltaic cells based on interlayer excitation energy transfer. Org Electron 11:700–704. doi:10.1016/j.orgel.2009.12.023

    Article  Google Scholar 

  160. Feron K, Belcher W, Fell C, Dastoor P (2012) Organic solar cells: understanding the role of Förster resonance energy transfer. Int J Mol Sci 13:17019–17047. doi:10.3390/ijms131217019

    Article  Google Scholar 

  161. Vandewal K (2016) Interfacial charge transfer states in condensed phase systems. Annu Rev Phys Chem 67:113–133. doi:10.1146/annurev-physchem-040215-112144

    Article  Google Scholar 

  162. Deibel C, Strobel T, Dyakonov V (2010) Role of the charge transfer state in organic donor-acceptor solar cells. Adv Mater 22:4097–4111. doi:10.1002/adma.201000376

    Article  Google Scholar 

  163. Vandewal K, Albrecht S, Hoke ET, Graham KR, Widmer J, Douglas JD, Schubert M, Mateker WR, Bloking JT, Burkhard GF, Sellinger A, Fréchet JMJ, Amassian A, Riede MK, McGehee MD, Neher D, Salleo A (2013) Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat Mater 13:63–68. doi:10.1038/nmat3807

    Article  Google Scholar 

  164. Gelinas S, Rao A, Kumar A, Smith SL, Chin AW, Clark J, van der Poll TS, Bazan GC, Friend RH (2014) Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science (80–)343:512–516. doi:10.1126/science.1246249

  165. Jamieson FC, Domingo EB, McCarthy-Ward T, Heeney M, Stingelin N, Durrant JR (2012) Fullerenecrystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem Sci 3:485–492. doi:10.1039/C1SC00674F

    Article  Google Scholar 

  166. Sweetnam S, Graham KR, Ngongang Ndjawa GO, Heumüller T, Bartelt JA, Burke TM, Li W, You W, Amassian A, McGehee MD (2014) Characterization of the polymer energy landscape in polymer: fullerene bulk heterojunctions with pure and mixed phases. J Am Chem Soc 136:14078–14088. doi:10.1021/ja505463r

    Article  Google Scholar 

  167. Neher D, Kniepert J, Elimelech A, Koster LJA (2016) A new figure of merit for organic solar cells with transport-limited photocurrents. Sci Rep 6:24861. doi:10.1038/srep24861

    Article  Google Scholar 

  168. Kniepert J, Lange I, Heidbrink J, Kurpiers J, Brenner TJK, Koster LJA, Neher D (2015) Effect of solvent additive on generation, recombination, and extraction in PTB7:PCBM solar cells: a conclusive experimental and numerical simulation study. J Phys Chem C 119:8310–8320. doi:10.1021/jp512721e

    Article  Google Scholar 

  169. Fischer J, Widmer J, Kleemann H, Tress W, Koerner C, Riede M, Vandewal K, Leo K (2015) A charge carrier transport model for donor-acceptor blend layers. J Appl Phys 117:45501. doi:10.1063/1.4906561

    Article  Google Scholar 

  170. Vandewal K, Widmer J, Heumueller T, Brabec CJ, McGehee MD, Leo K, Riede M, Salleo A (2014) Increased open-circuit voltage of organic solar cells by reduced donor-acceptor interface area. Adv Mater 26:3839–3843. doi:10.1002/adma.201400114

    Article  Google Scholar 

  171. Burke TM, Sweetnam S, Vandewal K, McGehee MD (2015) Beyond Langevin recombination: how equilibrium between free carriers and charge transfer states determines the open-circuit voltage of organic solar cells. Adv Energy Mater 5:1500123. doi:10.1002/aenm.201500123

    Article  Google Scholar 

  172. Graham KR, Erwin P, Nordlund D, Vandewal K, Li R, Ngongang Ndjawa GO, Hoke ET, Salleo A, Thompson ME, McGehee MD, Amassian A (2013) Re-evaluating the role of sterics and electronic coupling in determining the open-circuit voltage of organic solar cells. Adv Mater 25:6076–6082. doi:10.1002/adma.201301319

    Article  Google Scholar 

  173. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV (2010) Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells. Phys Rev B 81:125204. doi:10.1103/PhysRevB.81.125204

    Article  Google Scholar 

  174. Widmer J, Tietze M, Leo K, Riede M (2013) Open-circuit voltage and effective gap of organic solar cells. Adv Funct Mater 23:5814–5821. doi:10.1002/adfm.201301048

    Article  Google Scholar 

  175. Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H (2016) Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat Energy 1:16089. doi:10.1038/nenergy.2016.89

    Article  Google Scholar 

  176. Ran NA, Love JA, Takacs CJ, Sadhanala A, Beavers JK, Collins SD, Huang Y, Wang M, Friend RH, Bazan GC, Nguyen T-Q (2016) Harvesting the full potential of photons with organic solar cells. Adv Mater 28:1482–1488. doi:10.1002/adma.201504417

    Article  Google Scholar 

  177. Wang C, Xu X, Zhang W, Bergqvist J, Xia Y, Meng X, Bini K, Ma W, Yartsev A, Vandewal K, Andersson MR, Inganäs O, Fahlman M, Wang E (2016) Low band gap polymer solar cells with minimal voltage losses. Adv Energy Mater 6:1600148. doi:10.1002/aenm.201600148

    Article  Google Scholar 

  178. Tuladhar SM, Azzouzi M, Delval F, Yao J, Guilbert AAY, Kirchartz T, Montcada NF, Dominguez R, Langa F, Palomares E, Nelson J (2016) Low open-circuit voltage loss in solution-processed small-molecule organic solar cells. ACS Energy Lett 1:302–308. doi:10.1021/acsenergylett.6b00162

    Article  Google Scholar 

  179. Sulas DB, Yao K, Intemann JJ, Williams ST, Li C-Z, Chueh C-C, Richards JJ, Xi Y, Pozzo LD, Schlenker CW, Jen AK-Y, Ginger DS (2015) Open-circuit voltage losses in selenium-substituted organic photovoltaic devices from increased density of charge-transfer states. Chem Mater 27:6583–6591. doi:10.1021/acs.chemmater.5b02133

    Article  Google Scholar 

  180. Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Organic tandem solar cells: a review. Energy Environ Sci 2:347. doi:10.1039/b817952b

    Article  Google Scholar 

  181. Riede M, Mueller T, Tress W, Schueppel R, Leo K (2008) Small-molecule solar cells—status and perspectives. Nanotechnology 19:424001. doi:10.1088/0957-4484/19/42/424001

    Article  Google Scholar 

  182. Hadipour A, de Boer B, Blom PWM (2008) Device operation of organic tandem solar cells. Org Electron 9:617–624. doi:10.1016/j.orgel.2008.03.009

    Article  Google Scholar 

  183. Timmreck R, Meyer T, Gilot J, Seifert H, Mueller T, Furlan A, Wienk MM, Wynands D, Hohl-Ebinger J, Warta W (2015) Characterization of tandem organic solar cells. Nat Photonics 9:478–479

    Article  Google Scholar 

Download references

Acknowledgements

We thank the many people who have been involved in the work which is presented in this Chapter. In particular, we thank Peter Bäuerle and his coworkers (University of Ulm) for preparation of the thiophene compounds. At IAPP, we thank Johannes Benduhn, Janine Fischer, Felix Holzmüller, Rico Meerheim, Moritz Riede, Reinhgard Scholz, Johannes Widmer, Max Tietze, and many more which cannot be named all here. We thank the Deutsche Forschungsgemeinschaft for their support in the framework of SPP 1355 “Organic Photovoltaics” and the BMBF for support in the “Innoprofile” framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Leo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Moench, T. et al. (2018). Small Molecule Solar Cells. In: Tian, H., Boschloo, G., Hagfeldt, A. (eds) Molecular Devices for Solar Energy Conversion and Storage. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5924-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5924-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5923-0

  • Online ISBN: 978-981-10-5924-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics