Skip to main content

Molecular Solar-Thermal Energy Storage: Molecular Design and Functional Devices

  • Chapter
  • First Online:
Molecular Devices for Solar Energy Conversion and Storage

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Solar energy is abundant all over the world, but to be useful, the energy received must either be transformed to electricity, heat or latent chemical energy. The latter two options have the advantages that the energy can be stored. In molecular solar-thermal energy storage (MOST), solar energy is stored in chemical bonds; this is achieved using compounds undergoing photoinduced isomerisation to metastable isomers. Using a catalyst, the isomer can be recycled to its original form and the stored energy released as heat. This chapter describes the principles of the MOST concept and goes into details about the most studied MOST systems. The last part of the chapter deals with the integration of MOST systems into operational devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dinda M, Chakraborty S, Kanti Si M, Samanta S, Ganguly B, Maiti S, Ghosh PK (2014) Solar driven uphill conversion of dicyclopentadiene to cyclopentadiene: an important synthon for energy systems and fine chemicals. RSC Adv 4(97):54558–54564

    Article  Google Scholar 

  2. Marcus RJ, Wohlers HC (1961) Photochemical systems for solar energy conversion: nitrosyl chloride. Sol Energy 5:44–57

    Article  Google Scholar 

  3. Scheele CW (1777) In: Chemische Abhandlung von der Luft und dem Feuer. Magn. Swederus, Uppsala and Leipzig, pp 61–80

    Google Scholar 

  4. Scheele CW (1786) Von Hrn. Scheele in Köping. Chemische Annalen für die Freunde der Naturlehre. (1):part 1, 332

    Google Scholar 

  5. Grotthuss T (1819) Auszug aus vier Abhandlungen Physikalisch-chemischen Inhalts. Ann Phys 61:50–74

    Article  Google Scholar 

  6. Trommsdorff H (1834) Ueber Santonin. Ann Chem Pharm 11(2):190–207

    Google Scholar 

  7. Matsuura T, Sata Y, Ogura K, Mori M (1968) Photoinduced reactions. XXIII. A novel photorearrangement of santonin in the solid state. Tetrahedron Lett 44:4627–4630

    Article  Google Scholar 

  8. Natarajan A, Tsai CK, Khan SI, McCarren P, Houk KN, Garcia-Garibay MA (2007) The photoarrangement of α-santonin is a single-crystal-to-single-crystal reaction: a long kept secret in solid-state organic chemistry revealed. J Am Chem Soc 129(32):9846–9847

    Article  Google Scholar 

  9. Fritzsche (1867) Ueber die festen Kohlenwasserstoffe des Steinkohlentheers. J Prakt Chem 101:333–343

    Google Scholar 

  10. Luther R, Weigert F (1905) Reversible photochemical reactions in a homogeneous system, I. Z Phys Chem Stoechiom Verwandtschaftsl 51:297

    Google Scholar 

  11. Luther R, Weigert F (1905) Reversible photochemical reactions in homogeneous systems. Anthracene and dianthracene. II. Zeit physikal Chem 53:385–427

    Google Scholar 

  12. Weigert F (1908) The thermodynamic treatment of photochemical processes. Z physik Chem 63:458–466

    Google Scholar 

  13. Weigert F (1909) Chemical action of light (IV). Further contributions to the thermodynamic theory of photochemical processes. Ber Dtsch Chem Ges 42:850–862

    Article  Google Scholar 

  14. Weigert F (1909) Ueber die Verwandelbarkeit von Licht in chemische Energie. Jahrbuch für Photographie, Kinematographie und Reproduktionsverfahren:109

    Google Scholar 

  15. Moth-Poulsen K, Coso D, Börjesson K, Vinokurov N, Meier SK, Majumdar A, Vollhardt KPC, Segalman RA (2012) Molecular solar thermal (MOST) energy storage and release system. Energy Environ Sci 5(9):8534–8537

    Article  Google Scholar 

  16. Jones G II, Chiang S-H, Phan Thanh X (1979) Energy storage in organic photoisomers. J Photochem 10(1):1–18

    Article  Google Scholar 

  17. Yoshida Z (1985) New molecular energy storage systems. J Photochem 29(1–2):27–40

    Article  Google Scholar 

  18. Splitter JS, Calvin M (1958) Preparation of oxaziranes by irradiation of nitrones. J Org Chem 23:651

    Article  Google Scholar 

  19. Splitter JS, Calvin M (1965) Oxaziridines. I. The irradiation products of several nitrones. J Org Chem 30(10):3427–3436

    Article  Google Scholar 

  20. Giezendanner H, Rosenkranz HJ, Hansen HJ, Schmid H (1973) Photoreactions. 30. Photochemistry of 3,5-diaryl-2-isoxazolines. Helv Chim Acta 56(7):2588–2611

    Article  Google Scholar 

  21. Jones G II, Ramachandran BR (1976) Catalytic activity in the reversion of an energy storing valence photoisomerization. J Org Chem 41(5):798–801

    Article  Google Scholar 

  22. Jones G II, Turbini LJ (1976) Valence photoisomerization of 1-ethoxycarbonyl-1H-azepine and its thermal reversion. Quantitative aspects including energy surface relations. J Org Chem 41(14):2362–2367

    Article  Google Scholar 

  23. Jones G II, Reinhard TE, Bergmark WR (1978) Photon energy storage in organic materials. The case of linked anthracenes. Sol Energy 20(3):241–248

    Article  Google Scholar 

  24. Xu J-F, Chen Y-Z, Wu L-Z, Tung C-H, Yang Q-Z (2013) Dynamic covalent bond based on reversible [4 + 4| photocycloaddition of anthracene for construction of double-dynamic polymers. Org Lett 15(24):6148–6151

    Article  Google Scholar 

  25. Douglas JE, Rabinovitch BS, Looney FS (1955) Kinetics of the thermal cis-trans isomerization of dideuterioethylene. J Chem Phys 23:315–323

    Article  Google Scholar 

  26. Ciamician GL, Silber P (1903) Chemische Lichtwirkungen. (VII. Mittheilung.). Ber. 36:4266–4272

    Article  Google Scholar 

  27. Stoermer R (1910) Über die Umlagerung stabiler stereo-isomerer Äthylenkörper in labile durch ultraviolettes Licht (I). Ber. 42:4865–4871

    Article  Google Scholar 

  28. Caia V, Cum G, Gallo R, Mancini V, Pitoni E (1983) A high enthalpy value in thermal isomerization of photosynthesized cis-9-styrylacridines. Tetrahedron Lett 24(36):3903–3904

    Article  Google Scholar 

  29. Bastianelli C, Caia V, Cum G, Gallo R, Mancini V (1991) Thermal isomerization of photochemically synthesized (Z)-9-styrylacridines. An unusually high enthalpy of Z → E conversion for stilbene-like compounds. J Chem Soc Perkin Trans 2(5):679–683

    Article  Google Scholar 

  30. Hartley GS (1937) Cis form of azobenzene. Nature 140:281

    Article  Google Scholar 

  31. Hartley GS (1938) Cis form of azobenzene and the velocity of the thermal cis ↹ trans conversion of azobenzene and some derivatives. J Chem Soc 633–642

    Google Scholar 

  32. Adamson AW, Vogler A, Kunkely H, Wachter R (1978) Photocalorimetry. Enthalpies of photolysis of trans-azobenzene, ferrioxalate and cobaltioxalate ions, chromium hexacarbonyl, and dirhenium decarbonyl. J Am Chem Soc 100(4):1298–1300

    Article  Google Scholar 

  33. Olmsted J III, Lawrence J, Yee GG (1983) Photochemical storage potential of azobenzenes. Sol Energy 30(3):271–274

    Article  Google Scholar 

  34. Kolpak AM, Grossman JC (2013) Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion. J Chem Phys 138(3):034303/1–034303/6

    Google Scholar 

  35. Kolpak AM, Grossman JC (2011) Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. Nano Lett 11(8):3156–3162

    Article  Google Scholar 

  36. Kucharski TJ, Ferralis N, Kolpak AM, Zheng JO, Nocera DG, Grossman JC (2014) Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. Nat Chem 6(5):441–447

    Article  Google Scholar 

  37. Feng Y, Liu H, Luo W, Liu E, Zhao N, Yoshino K, Feng W (2013) Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage. Sci Rep 3:3260

    Article  Google Scholar 

  38. Zhitomirsky D, Cho E, Grossman JC (2016) Solid-state solar thermal fuels for heat release applications. Adv Energy Mater 6:1502006

    Article  Google Scholar 

  39. Durgun E, Grossman JC (2013) Photoswitchable molecular rings for solar-thermal energy storage. J Phys Chem Lett 4(6):854–860

    Article  Google Scholar 

  40. Slavov C, Yang C, Schweighauser L, Boumrifak C, Dreuw A, Wegner HA, Wachtveitl J (2016) Connectivity matters—ultrafast isomerization dynamics of bisazobenzene photoswitches. Phys Chem Chem Phys

    Google Scholar 

  41. Masutani K, M-a Morikawa, Kimizuka N (2014) A liquid azobenzene derivative as a solvent-free solar thermal fuel. Chem Commun 50(99):15803–15806

    Article  Google Scholar 

  42. Ishiba K, Morikawa M-a, Chikara C, Yamada T, Iwase K, Kawakita M, Kimizuka N (2015) Photoliquefiable ionic crystals: a phase crossover approach for photon energy storage materials with functional multiplicity. Angew Chem Int Ed 54(5):1532–1536

    Google Scholar 

  43. Giuliano CR, Hess LD, Margerum JD (1968) Cis-trans isomerization and pulsed laser studies of substituted indigo dyes. J Am Chem Soc 90(9):587–594

    Article  Google Scholar 

  44. Ikegami M, Arai T (2003) Photoisomerization and fluorescence properties of hemiindigo compounds having intramolecular hydrogen bonding. Bull Chem Soc Jpn 76(9):1783–1792

    Article  Google Scholar 

  45. Pouliquen J, Wintgens V, Toscano V, Jaafar BB, Tripathi S, Kossanyi J, Valat P (1984) Photoisomerization of N, N′-disubstituted indigos. A search for energy storage. Can J Chem 62(11):2478–2486

    Article  Google Scholar 

  46. Blanco-Lomas M, Martinez-Lopez D, Campos PJ, Sampedro D (2014) Tuning of the properties of rhodopsin-based molecular switches. Tetrahedron Lett 55(22):3361–3364

    Article  Google Scholar 

  47. Kucharski TJ, Tian Y, Akbulatov S, Boulatov R (2011) Chemical solutions for the closed-cycle storage of solar energy. Energy Environ Sci 4(11):4449–4472

    Article  Google Scholar 

  48. Diels O, Alder K (1931) Synthesis in the hydroaromatic series. XI. Diene syntheses of cyclopentadiene, cyclohexadiene and butadiene with acetylenedicarboxylic acid and its esters. Justus Liebigs Ann Chem 490:236–242

    Article  Google Scholar 

  49. Hyman I (1951) Bicycloheptadienes. Application: BE Patent BE 498176

    Google Scholar 

  50. Cristol SJ, Snell RL (1958) Bridged polycyclic compounds. VI. The photoisomerization of bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylic acid to quadricyclo [2.2.1,02,6,03,5]heptane-2,3-dicarboxylic acid. J Am Chem Soc 80:1950–1952

    Article  Google Scholar 

  51. Dauben WG, Cargill RL (1961) Photochemical transformations. VIII. Isomerization of bicyclo[2.2.1]hepta-2,5-diene to quadricyclo[2.2.1.02.6.03,5]-heptane (quadricyclene). Tetrahedron 15:197–201

    Article  Google Scholar 

  52. Hammond GS, Turro NJ, Fischer A (1961) Photosensitized cycloaddition reactions. J Am Chem Soc 83:4674–4675

    Article  Google Scholar 

  53. Roquitte BC (1963) Photolysis of bicyclo[2.2.1]hepta-2,5-diene in the vapor phase. J Am Chem Soc 85(22):3700

    Article  Google Scholar 

  54. Qin C, Zhao Z, Davis SR (2005) Ab initio study of the thermal isomerization of quadricyclane to norbornadiene. J Mol Struct Theochem 728(1–3):67–70

    Article  Google Scholar 

  55. X-w An, Y-d Xie (1993) Enthalpy of isomerization of quadricyclane to norbornadiene. Thermochim Acta 220(1–2):17–25

    Google Scholar 

  56. Bren VA, Dubonosov AD, Minkin VI, Chernoivanov VA (1991) Norbornadiene-quadricyclane: an effective molecular system for solar energy storage. Russ Chem Rev 60(5):451–469

    Article  Google Scholar 

  57. Nagai T, Fujii K, Takahashi I, Shimada M (2001) Trifluoromethyl-substituted donor-acceptor norbornadiene, useful solar energy material. Bull Chem Soc Jpn 74(9):1673–1678

    Article  Google Scholar 

  58. Dubonosov AD, Bren VA, Chernoivanov VA (2002) Norbornadiene-quadricyclane as an abiotic system for the storage of solar energy. Russ Chem Rev 71(11):917–927

    Article  Google Scholar 

  59. Schwendiman DP, Kutal C (1977) Transition metal photoassisted valence isomerization of norbornadiene. An attractive energy-storage reaction. Inorg Chem 16(3):719–721

    Article  Google Scholar 

  60. Kutal C, Schwendiman DP, Grutsch P (1977) Use of transition metal compounds to sensitize a photochemical energy storage reaction. Sol Energy 19(6):651–655

    Article  Google Scholar 

  61. Schwendiman DP, Kutal C (1977) Catalytic role of copper(I) in the photoassisted valence isomerization of norbornadiene. J Am Chem Soc 99(17):5677–5682

    Article  Google Scholar 

  62. Arai T, Oguchi T, Wakabayashi T, Tsuchiya M, Nishimura Y, Oishi S, Sakuragi H, Tokumaru K (1987) Mechanistic approach to the sensitization process of aromatic ketones in the isomerization between norbornadiene and quadricyclane. Bull Chem Soc Jpn 60(8):2937–2943

    Article  Google Scholar 

  63. Smith CD (1971) Quadricyclane. Org Syn 51:133–136

    Article  Google Scholar 

  64. Gray V, Lennartson A, Ratanalert P, Boerjesson K, Moth-Poulsen K (2014) Diaryl-substituted norbornadienes with red-shifted absorption for molecular solar thermal energy storage. Chem Commun 50(40):5330–5332

    Article  Google Scholar 

  65. Toda T, Hasegawa E, Mukai T, Tsuruta H, Hagiwara T, Yoshida T (1982) Organic photochemistry. 61. Photochemical reaction of 2-aroyl-3-arylnorbornadienes. Chem Lett 10:1551–1554

    Article  Google Scholar 

  66. Kuisma MJ, Lundin AM, Moth-Poulsen K, Hyldgaard P, Erhart P (2016) Comparative ab-initio study of substituted norbornadiene-quadricyclane compounds for solar thermal storage. J Phys Chem C 120(7):3635–3645

    Article  Google Scholar 

  67. Koblik AV, Murad’yan LA, Dubonosov AD, Zolotovskova GP (1990) Ethynyl carbocations. 3. Diels-Alder reaction of 4-(phenylethynyl)pyrylium salts. Khim Geterotsikl Soedin 3:307–311

    Google Scholar 

  68. Börjesson K, Lennartson A, Moth-Poulsen K (2013) Efficiency limit of molecular solar thermal energy collecting devices. ACS Sustain Chem Eng 1(6):585–590

    Article  Google Scholar 

  69. Dubonosov AD, Galichev SV, Chernoivanov VA, Bren VA, Minkin VI (2001) Synthesis and photoinitiated isomerizations of 3-(4-nitrophenyl)- and 3-(4-aminophenyl)bicyclo[2.2.1]hepta-2,5-diene-2-carbaldehyde and -2-carboxylic acid derivatives. Russ J Org Chem 37(1):67–71

    Article  Google Scholar 

  70. Laine P, Marvaud V, Gourdon A, Launay J-P, Argazzi R, Bignozzi C-A (1996) Electron transfer through norbornadiene and quadricyclane moieties as a model for molecular switching. Inorg Chem 35(3):711–714

    Article  Google Scholar 

  71. Miki S, Asako Y, Yoshida Z (1987) Photochromic solid films prepared by doping with donor-acceptor norbornadienes. Chem Lett 1:195–198

    Article  Google Scholar 

  72. Wang XS, Zhang BW, Cao Y (1996) Valence isomerization of norbornadiene in polymer systems for solar energy storage. J Photochem Photobiol A 96(1–3):193–198

    Article  Google Scholar 

  73. Nishikubo T, Kameyama A, Kishi K, Nakajima T (1994) Synthesis of new photoresponsive polyamides containing norbornadiene residues in the main chain. Macromolecules 27(5):1087–1092

    Article  Google Scholar 

  74. Wright ME, Allred GD, Wardle RB, Cannizzo LF (1993) Polymers containing ring-strain energy. 1. New monomers and polymers based on cyclopropane, norbornadiene, and quadricyclane. J Org Chem 58(15):4122–4126

    Article  Google Scholar 

  75. Nishimura I, Kameyama A, Nishikubo T (1998) Synthesis of self-photosensitizing polyesters carrying pendant norbornadiene (NBD) moieties and benzophenone groups and their photochemical reactions. Macromolecules 31(9):2789–2796

    Article  Google Scholar 

  76. Kealy TJ, Pauson PL (1951) A new type of organo-iron compound. Nature 168:1039–1040

    Article  Google Scholar 

  77. DeMore WB, Pritchard HO, Davidson N (1959) Photochemical experiments in rigid media at low temperatures. II. The reactions of methylene, cyclopentadienylene, and diphenylmethylene. J Am Chem Soc 81:5874–5879

    Article  Google Scholar 

  78. Escher A, Rutsch W, Neuenschwander M (1986) Fulvenes, fulvalenes. Part 50. Synthesis of pentafulvalene by oxidative coupling of cyclopentadienide with copper(II) chloride. Helv Chim Acta 69(7):1644–1654

    Article  Google Scholar 

  79. Vollhardt KPC, Weidman TW (1983) Synthesis, structure, and photochemistry of tetracarbonyl(fulvalene)diruthenium. Thermally reversible photoisomerization involving carbon-carbon bond activation at a dimetal center. J Am Chem Soc 105(6):1676–1677

    Article  Google Scholar 

  80. Vollhardt KPC, Weidman TW (1984) Efficient syntheses of new fulvalene-bridged carbonyl complexes of cobalt, ruthenium, chromium, molybdenum, and tungsten. Organometallics 3(1):82–86

    Article  Google Scholar 

  81. Boese R, Cammack JK, Matzger AJ, Pflug K, Tolman WB, Vollhardt KPC, Weidman TW (1997) Photochemistry of (fulvalene)tetracarbonyldiruthenium and its derivatives: efficient light energy storage devices. J Am Chem Soc 119(29):6757–6773

    Article  Google Scholar 

  82. Kanai Y, Srinivasan V, Meier SK, Vollhardt KPC, Grossman JC (2010) Mechanism of thermal reversal of the (fulvalene)tetracarbonyldiruthenium photoisomerization: toward molecular solar-thermal energy storage. Angew Chem Int Ed 49(47):8926–8929

    Article  Google Scholar 

  83. Harpham MR, Nguyen SC, Hou Z, Grossman JC, Harris CB, Mara MW, Stickrath AB, Kanai Y, Kolpak AM, Lee D, Liu D-J, Lomont JP, Moth-Poulsen K, Vinokurov N, Chen LX, Vollhardt KPC (2012) X-ray transient absorption and picosecond IR spectroscopy of fulvalene(tetracarbonyl)diruthenium on photoexcitation. Angew Chem Int Ed 51(31):7692–7696

    Article  Google Scholar 

  84. Börjesson K, Coso D, Gray V, Grossman Jeffrey C, Guan J, Harris Charles B, Hertkorn N, Hou Z, Kanai Y, Lee D, Lomont Justin P, Majumdar A, Meier Steven K, Moth-Poulsen K, Myrabo Randy L, Nguyen Son C, Segalman Rachel A, Srinivasan V, Tolman Willam B, Vinokurov N, Vollhardt KPC, Weidman Timothy W (2014) Exploring the potential of fulvalene dimetals as platforms for molecular solar thermal energy storage: computations, syntheses, structures, kinetics, and catalysis. Chem Eur J 20:15587–15604

    Article  Google Scholar 

  85. Zhu B, Miljanic OS, Vollhardt KPC, West MJ (2005) Synthesis of 2,2′,3,3′-tetramethyl- and 2,2′,3,3′-tetra-tert-butylfulvalene: Attractive platforms for dinuclear transition metal fragments, as exemplified by (η5:η5-2,2′,3,3′-t-Bu4C10H4)M2(CO)n (M = Fe, Ru, Os, Mo) and first X-ray crystal structures of fulvalene diiron and diosmium complexes. Synthesis 19:3373–3379

    Google Scholar 

  86. Börjesson K, Lennartson A, Moth-Poulsen K (2014) Fluorinated fulvalene ruthenium compound for molecular solar thermal applications. J Fluorine Chem 161:24–28

    Article  Google Scholar 

  87. Hou Z, Nguyen SC, Lomont JP, Harris CB, Vinokurov N, Vollhardt KPC (2013) Switching from Ru to Fe: picosecond IR spectroscopic investigation of the potential of the (fulvalene)tetracarbonyldiiron frame for molecular solar-thermal storage. Phys Chem Chem Phys 15(20):7466–7469

    Article  Google Scholar 

  88. Lennartson A, Lundin A, Börjesson K, Gray V, Moth-Poulsen K (2016) Tuning the photochemical properties of the fulvalene-tetracarbonyl-diruthenium system. Dalton Trans

    Google Scholar 

  89. Miki S, Maruyama T, Ohno T, Tohma T, Toyama S, Yoshida Z (1988) Alumina-anchored cobalt(II) Schiff base catalyst for the isomerization of trimethyldicyanoquadricyclane to the norbornadiene. Chem Lett 5:861–864

    Article  Google Scholar 

  90. Philippopoulos C, Economou D, Economou C, Marangozis J (1983) Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy. Ind Eng Chem Prod Res Dev 22(4):627–633

    Article  Google Scholar 

  91. Philippopoulos C, Marangozis J (1984) Kinetics and efficiency of solar energy storage in the photochemical isomerization of norbornadiene to quadricyclane. Ind Eng Chem Prod Res Dev 23(3):458–466

    Article  Google Scholar 

  92. Mango FD, Schachtschneider JH (1967) Molecular orbital symmetry conservation in transition metal catalyzed transformations. J Am Chem Soc 89(10):2484–2486

    Article  Google Scholar 

  93. Hautala RR, King RB, C. K (1979) Solar energy; chemical conversion and stoarage. The Humana Press, Clifton

    Google Scholar 

  94. Maruyama K, Tamiaki H, Yanai T (1985) Valence isomerization between water-soluble norbornadiene and quadricyclane derivative. Bull Chem Soc Jpn 58(2):781–782

    Article  Google Scholar 

  95. Manassen J (1970) Catalysis of a symmetry-restricted reactions by transition metal complexes. Importance of the ligand. J Catal 18(1):38–45

    Google Scholar 

  96. Wilson HD, Rinker RG (1976) Kinetics of quadricyclene-norbornadiene isomerization reaction for use in modeling supported liquid-phase catalysis. J Catal 42(2):268–274

    Article  Google Scholar 

  97. Maruyama K, Terada K, Yamamoto Y (1981) Exploitation of solar energy storage systems. Valence isomerization between norbornadiene and quadricyclane derivatives. J Org Chem 46(26):5294–5300

    Article  Google Scholar 

  98. Noyori R, Umeda I, Kawauchi H, Takaya H (1975) Nickel-catalyzed reactions involving strained bond. XII. Nickel(0)-catalyzed reaction of quadricyclane with electron-deficient olefins. J Am Chem Soc 97(4):812–820

    Article  Google Scholar 

  99. King RB, Ikai S (1979) (Triphenylcyclopropenyl)nickel derivatives as catalysts for the isomerization of quadricyclane to norbornadiene. Inorg Chem 18(4):949–954

    Article  Google Scholar 

  100. Hoffmann RW, Barth W, Carlsen L, Egsgaard H (1983) Carbene reactions. Part 16. Thermolyses of 7-norbornadienespiro-2-(1,3-dithiolane) S-oxides. J Chem Soc Perkin Trans 2(11):1687–1692

    Article  Google Scholar 

  101. Minkin VI, Bren VA, Chernoivanov VA, Dubonosov AD, Galichev SV (1994) Photochromic behavior of 2,3-substituted norbornadienes. Mol Cryst Liq Cryst Sci Technol Sect A 246:151–154

    Article  Google Scholar 

  102. Volger HC, Hogeveen H (1967) N.M.R. kinetic investigation of the system norbornadiene-μ-dichloro dirhodium dinorbornadiene. Recl Trav Chim Pays-Bas 86(11):1066–1076

    Google Scholar 

  103. Cassar L, Halpern J (1970) Oxidative addition of quadricyclene to di-μ-chlorotetracarbonyldirhodium(I) and the mechanism of rhodium(I)-catalyzed isomerization of quadricyclene to norbornadiene. J Chem Soc D 17:1082–1083

    Article  Google Scholar 

  104. Bruggink A, Hogeveen H (1972) Transition metal promoted isomerizations of 7-oxanorbornadienes and 3-oxaquadricyclanes. Tetrahedron Lett 49:4961–4964

    Article  Google Scholar 

  105. Hogeveen H, Nusse BJ (1973) Rhodium(I) catalyzed valence isomerization of quadricyclanes. Tetrahedron Lett 38:3667–3670

    Article  Google Scholar 

  106. Maruyama K, Terada K, Yamamoto Y (1981) Highly efficient valence isomerization between norbornadiene and quadricyclane derivatives under sunlight. Chem Lett 7:839–842

    Article  Google Scholar 

  107. Taylor RB, Jennings PW (1981) Solvent effects on the valence isomerization catalyst (norbornadiene)rhodium chloride dimer. Inorg Chem 20(11):3997–3999

    Article  Google Scholar 

  108. Chen MJ, Feder HM (1979) Valence isomerization of quadricyclane catalyzed by bis(μ-acetato)-bis(norbornadiene)dirhodium: evidence for a rhodocyclobutane intermediate. Inorg Chem 18(7):1864–1869

    Article  Google Scholar 

  109. Hogeveen H, Volger HC (1967) Valence isomerization of quadricyclene to norbornadiene catalyzed by transition metal complexes. J Am Chem Soc 89(10):2486–2487

    Article  Google Scholar 

  110. Hogeveen H, Nusse BJ (1974) Mechanistic differences between the rhodium(I)-, palladium(II)-, and silver(I)-catalyzed isomerization of quadricyclanes. Tetrahedron Lett 2:159–162

    Article  Google Scholar 

  111. Behr A, Keim W, Thelen G, Scharf HD, Ressler I (1982) Solar energy storage with quadricyclane systems. J Chem Technol Biotechnol 32(6):627–630

    Article  Google Scholar 

  112. Gassman PG, Patton DS (1968) Acid-catalyzed rearrangement of quadricyclanone and quadricyclanone dimethyl ketal. Product dependency on carbon protonation versus oxygen protonation. J Am Chem Soc 90(26):7276–7282

    Google Scholar 

  113. Babsch H, Fritz H, Prinzbach H (1975) Rearrangement of tetracyclo[3.2.0.02,7.04,6]heptane to tricyclo[4.1.0.02,7]heptene. Tetrahedron Lett 52:4677–4680

    Article  Google Scholar 

  114. Bleasdale C, Jones DW (1983) A convenient synthesis of 7-substituted norbornadienes. J Chem Soc Chem Commun 5:214–216

    Article  Google Scholar 

  115. Bleasdale C, Jones DW (1984) Donor-acceptor accelerated norbornadiene rearrangements. J Chem Soc Chem Commun 18:1200–1202

    Article  Google Scholar 

  116. Patrick TB, Bechtold DS (1984) Kinetics of the isomerization of quadricyclane to norbornadiene promoted by tin(II) chloride and palladium(II) chloride. J Org Chem 49(11):1935–1937

    Article  Google Scholar 

  117. Miki S, Ohno T, Iwasaki H, Maeda Y, Yoshida ZI (1988) Catalysis of cyclopropenylidenepalladium(II) complexes for the isomerization of quadricyclane to norbornadiene. Tetrahedron 44(1):55–60

    Article  Google Scholar 

  118. Menon BC, Pincock RE (1969) Study of potential cyclopropyl-silver ion complex formation. Can J Chem 47(18):3327–3331

    Article  Google Scholar 

  119. Nelsen SF, Gillespie JP, Hintz PJ (1971) Electrophilic reactions of 2,3-dicarbomethoxy-7-isopropylidenequadricyclane. Tetrahedron Lett 25:2361–2364

    Article  Google Scholar 

  120. Koser GF, Pappas PR, Yu S-M (1973) Ag(I)-promoted reaction of tetracyclo[3.2.0.0.2,7,4,6]heptane (guadricyclene), methyl tetracyclo[3.2.0.0.2,704,6]heptane-1-carboxylate (2-(methoxycarbonyl)quadricyclene), and dimethyl tetracyclo[3.2.0.0.2,704,6]heptane-1,2-dicarboxylate (2,3-bis(methoxycarbonyl)quadricyclene). Tetrahedron Lett 49:4943–4946

    Article  Google Scholar 

  121. Koser GF, Faircloth JN (1976) Silver(I)-promoted reactions of strained hydrocarbons. Oxidation vs. rearrangement. J Org Chem 41(3):583–585

    Article  Google Scholar 

  122. Landis ME, Gremaud D, Patrick TB (1982) Cycloreversion of quadricyclane to norbornadiene catalyzed by tin(II) complexes. Tetrahedron Lett 23(4):375–378

    Article  Google Scholar 

  123. Rood IDC, Klumpp GW (1984) Catalysis of the thermal quadricyclane → norbornadiene isomerization by mercury(II) halides. Recl J R Neth Chem Soc 103(11):303–304

    Google Scholar 

  124. Hirao K, Yamashita A, Yonemitsu O (1988) Cycloreversion of acylquadricyclane to acylnorbornadiene promoted by metal oxides. Tetrahedron Lett 29(33):4109–4112

    Article  Google Scholar 

  125. Yamashita A, Hasebe K, Hirao K (1992) Cycloreversion of electron-rich quadricyclane initiated by metal oxides. Chem Lett 8:1481–1482

    Article  Google Scholar 

  126. Maruyama K, Tamiaki H, Kawabata S (1986) Exothermic isomerization of water-soluble quadricyclanes to norbornadienes by soluble and insoluble catalysts. J Chem Soc Perkin Trans 2(4):543–549

    Article  Google Scholar 

  127. King RB, Sweet EM (1979) Polymer-anchored cobalt tetraarylporphyrin catalysts for the conversion of quadricyclane to norbornadiene. J Org Chem 44(3):385–391

    Article  Google Scholar 

  128. Kuroda R, Saito Y (2000) Circular dichroism of inorganic complexes: interpretation and applications. Circular dichroism, 2nd edn

    Google Scholar 

  129. Chuang EC-C, Lin K-C (2002) Fourier transform near-infrared absorption spectroscopic study of catalytic isomerization of quadricyclane to norbornadiene by copper(II) and tin(II) salts. J Phys Chem B 106(1):132–136

    Article  Google Scholar 

  130. Fan H-F, Chin T-L, Lin K-C (2004) Kinetics of catalytic isomerization of quadricyclane to norbornadiene using near infrared absorption spectroscopy: conversion rate and diffusion motion in heterogeneous reaction. J Phys Chem B 108(26):9364–9370

    Article  Google Scholar 

  131. Fan H-F, Chang C-Y, Chin T-L, Ho T-I, Lin K-C (2006) Catalytic isomerization of quadricyclane using fourier transform near-infrared absorption spectroscopy: diffusion, conversion, and temperature effect. J Phys Chem B 110(11):5563–5569

    Article  Google Scholar 

  132. Tchougreeff AL, Tokmachev AM, Dronskowski R (2013) Resonance theory of catalytic action of transition-metal complexes: Isomerization of quadricyclane to norbornadiene catalyzed by metal porphyrins. Int J Quantum Chem 113(14):1833–1846

    Article  Google Scholar 

  133. Maruyama T, Yoshida Z, Miki S (1985) Laboratory liquid-solid reactor in heterogeneous catalysis. J Chem Eng Jpn 18(6):515–519

    Article  Google Scholar 

  134. Börjesson K, Dzebo D, Albinsson B, Moth-Poulsen K (2013) Photon upconversion facilitated molecular solar energy storage. J Mater Chem A 1(30):8521–8524

    Article  Google Scholar 

  135. Shames SWL, Zhang CM, Ferralis N, Grossman Jeffrey C (2013) Rapid windshield de-icing using solar thermal fuels. Int J Energy Effic Veh Des 15:1114–1119

    Google Scholar 

  136. Antol I (2013) Photodeactivation paths in norbornadiene. J Comput Chem 34(17):1439–1445

    Article  Google Scholar 

  137. Vessally E (2009) Maximizing the solar energy storage of the norbornadiene-quadricyclane system: mono-heteroatom effect by DFT calculations. Phosphorus Sulfur Silicon Relat Elem 184(9):2307–2313

    Article  Google Scholar 

  138. Lindbaek Broman S, Brondsted Nielsen M (2014) Dihydroazulene: from controlling photochromism to molecular electronics devices. Phys Chem Chem Phys 16(39):21172–21182

    Article  Google Scholar 

  139. Cacciarini M, Skov AB, Jevric M, Hansen AS, Elm J, Kjaergaard HG, Mikkelsen KV, Brondsted Nielsen M (2015) Towards solar energy storage in the photochromic dihydroazulene-vinylheptafulvene system. Chem Eur J 21(20):7454–7461

    Article  Google Scholar 

  140. Olsen ST, Elm J, Storm FE, Gejl AN, Hansen AS, Hansen MH, Nikolajsen JR, Nielsen MB, Kjaergaard HG, Mikkelsen KV (2015) Computational methodology study of the optical and thermochemical properties of a molecular photoswitch. J Phys Chem A 119(5):896–904

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper Moth-Poulsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lennartson, A., Moth-Poulsen, K. (2018). Molecular Solar-Thermal Energy Storage: Molecular Design and Functional Devices. In: Tian, H., Boschloo, G., Hagfeldt, A. (eds) Molecular Devices for Solar Energy Conversion and Storage. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5924-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5924-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5923-0

  • Online ISBN: 978-981-10-5924-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics