Skip to main content

Structural Study of Proteins by Paramagnetic Lanthanide Probe Methods

  • Chapter
  • First Online:
Experimental Approaches of NMR Spectroscopy

Abstract

Long-range structural information provided by the paramagnetic lanthanide probe methods is invaluable in the structural analysis of proteins, particularly protein complexes and multi-domain proteins. The application of paramagnetic lanthanide probe methods in protein structural analysis is expanding, owing to recent developments in lanthanide-binding tags. Here, we describe paramagnetic effects observed in the presence of paramagnetic lanthanide ions, which can be exploited to obtain structural information about proteins. We also illustrate practical aspects of the experiments and analyses utilizing the paramagnetic lanthanide probe methods. Applications in structure determination of protein–protein complexes and visualization of conformational changes in multi-domain proteins are also described.

Fuyuhiko Inagaki: Deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inagaki, F., Miyazawa, T.: NMR analyses of molecular conformations and conformational equilibria with the lanthanide probe method. Progr. Nuclear Magn. Reson. Spectrosc. 14, 67–111 (1980)

    Article  CAS  Google Scholar 

  2. Hinckley, C.C.: Paramagnetic shifts in solutions of cholesterol and the dipyridine adduct of trisdipivalomethanatoeuropium(III). A shift reagent. J. Am. Chem. Soc. 91, 5160–5162 (1969)

    Article  CAS  Google Scholar 

  3. Barry, C.D., North, A.C.T., Glasel, J.A., Williams, R.J.P., Xavier, A.V.: Quantitative determination of mononucleotide conformations in solution using lanthanide ion shift and broadening NMR Probes. Nature 232, 236–245 (1971)

    Article  CAS  Google Scholar 

  4. Nitsche, C., Otting, G.: Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. Progr. Nuclear Magn. Reson. Spectrosc. 98–99, 20–49 (2017)

    Article  Google Scholar 

  5. Göbl, C., Madl, T., Simon, B., Sattler, M.: NMR approaches for structural analysis of multidomain proteins and complexes in solution. Progr. Nuclear Magn. Reson. Spectrosc. 80, 26–63 (2014)

    Article  Google Scholar 

  6. Matthews, S.: Perdeuteration/site-specific protonation approaches for high-molecular-weight proteins. In: Kristina Downing, A. (ed.) Protein NMR Techniques, pp. 035–046. Humana Press, New Jersey (2004)

    Google Scholar 

  7. Tugarinov, V., Kanelis, V., Kay, L.E.: Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1, 749–754 (2006)

    Article  CAS  Google Scholar 

  8. Kainosho, M., Torizawa, T., Iwashita, Y., Terauchi, T., Ono, A.M., Güntert, P.: Optimal isotope labelling for NMR protein structure determinations. Nature 440, 52–57 (2006)

    Article  CAS  Google Scholar 

  9. Sprangers, R., Kay, L.E.: Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445, 618–622 (2007)

    Article  CAS  Google Scholar 

  10. Kofuku, Y., Ueda, T., Okude, J., Shiraishi, Y., Kondo, K., Mizumura, T., Suzuki, S., Shimada, I.: Functional dynamics of deuterated β 2-adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew. Chem. Int. Ed. 53, 13376–13379 (2014)

    Article  CAS  Google Scholar 

  11. Koehler, J., Meiler, J.: Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. Progr. Nuclear Magn. Reson. Spectrosc. 59, 360–389 (2011)

    Article  CAS  Google Scholar 

  12. Hass, M.A., Ubbink, M.: Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints. Curr. Opin. Struct. Biol. 24, 45–53 (2014)

    Article  CAS  Google Scholar 

  13. Otting, G.: Protein NMR using paramagnetic ions. Annu. Rev. Biophys. 39, 387–405 (2010)

    Article  CAS  Google Scholar 

  14. Pintacuda, G., Keniry, M.A., Huber, T., Park, A.Y., Dixon, N.E., Otting, G.: Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins. J. Am. Chem. Soc. 126, 2963–2970 (2004)

    Article  CAS  Google Scholar 

  15. Allegrozzi, M., Bertini, I., Janik, M.B.L., Lee, Y.M., Liu, G., Luchinat, C.: Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 Å from the metal ion. J. Am. Chem. Soc. 122, 4154–4161 (2000)

    Article  CAS  Google Scholar 

  16. Tjandra, N., Bax, A.: Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114 (1997)

    Article  CAS  Google Scholar 

  17. Hansen, M.R., Mueller, L., Pardi, A.: Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Mol. Biol. 5, 1065–1074 (1998)

    Article  CAS  Google Scholar 

  18. Rückert, M., Otting, G.: Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J. Am. Chem. Soc. 122, 7793–7797 (2000)

    Article  Google Scholar 

  19. Tolman, J.R., Flanagan, J.M., Kennedy, M.A., Prestegard, J.H.: Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. PNAS 92, 9279–9283 (1995)

    Article  CAS  Google Scholar 

  20. Clore, G.M., Iwahara, J.: Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem. Rev. 109, 4108–4139 (2009)

    Article  CAS  Google Scholar 

  21. Bertini, I., Luchinat, C., Parigi, G., Ravera, E.: Relaxation. In: Solution NMR of Paramagnetic Molecules, pp. 77–126. Elsevier, Amsterdam (2017)

    Google Scholar 

  22. Bertini, I., Luchinat, C., Parigi, G., Ravera, E.: Lanthanoids and actinoids: shift and relaxation. In: Solution NMR of Paramagnetic Molecules, pp. 255–276. Elsevier, Amsterdam (2017)

    Google Scholar 

  23. Bertini, I., Janik, M.B.L., Lee, Y.M., Luchinat, C., Rosato, A.: Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix. J. Am. Chem. Soc. 123, 4181–4188 (2001)

    Article  CAS  Google Scholar 

  24. Pintacuda, G., John, M., Su, X.-C., Otting, G.: NMR structure determination of protein–ligand complexes by lanthanide labeling. Acc. Chem. Res. 40, 206–212 (2007)

    Article  CAS  Google Scholar 

  25. Bentrop, D., Bertini, I., Cremonini, M.A., Forsén, S., Luchinat, C., Malmendal, A.: Solution structure of the paramagnetic complex of the N-terminal domain of calmodulin with two Ce3+ ions by 1H NMR. Biochemistry 36, 11605–11618 (1997)

    Article  CAS  Google Scholar 

  26. Bertini, I., Janik, M.B.L., Liu, G., Luchinat, C., Rosato, A.: Solution structure calculations through self-orientation in a magnetic field of a cerium(III) substituted calcium-binding protein. J. Magn. Reson. 148, 23–30 (2001)

    Article  CAS  Google Scholar 

  27. Bertini, I., Donaire, A., Jiménez, B., Luchinat, C., Parigi, G., Piccioli, M., Poggi, L.: Paramagnetism-based versus classical constraints: an analysis of the solution structure of Ca Ln calbindin D9k. J. Biomol. NMR 21, 85–98 (2001)

    Article  CAS  Google Scholar 

  28. Rinaldelli, M., Ravera, E., Calderone, V., Parigi, G., Murshudov, G.N., Luchinat, C.: IUCr: simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences. Acta Crystallogr. D Biol. Crystallogr. 70, 958–967 (2014)

    Article  CAS  Google Scholar 

  29. Carlon, A., Ravera, E., Hennig, J., Parigi, G., Sattler, M., Luchinat, C.: Improved accuracy from joint X-ray and NMR refinement of a protein–RNA complex structure. J. Am. Chem. Soc. 138, 1601–1610 (2016)

    Article  CAS  Google Scholar 

  30. Pintacuda, G., Park, A.Y., Keniry, M.A., Dixon, N.E., Otting, G.: Lanthanide Labeling offers fast NMR approach to 3D structure determinations of protein–protein complexes. J. Am. Chem. Soc. 128, 3696–3702 (2006)

    Google Scholar 

  31. John, M., Pintacuda, G., Park, A.Y., Dixon, N.E., Otting, G.: Structure determination of protein–ligand complexes by transferred paramagnetic shifts. J. Am. Chem. Soc. 128, 12910–12916 (2006)

    Article  CAS  Google Scholar 

  32. Bertini, I., Del Bianco, C., Gelis, I., Katsaros, N., Luchinat, C., Parigi, G., Peana, M., Provenzani, A., Zoroddu, M.A.: Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. PNAS 101, 6841–6846 (2004)

    Article  CAS  Google Scholar 

  33. Bertini, I., Gupta, Y.K., Luchinat, C., Parigi, G., Peana, M., Sgheri, L., Yuan, J.: Paramagnetism-based NMR restraints provide maximum allowed probabilities for the different conformations of partially independent protein domains. J. Am. Chem. Soc. 129, 12786–12794 (2007)

    Article  CAS  Google Scholar 

  34. Russo, L., Maestre-Martinez, M., Wolff, S., Becker, S., Griesinger, C.: Interdomain dynamics explored by paramagnetic NMR. J. Am. Chem. Soc. 135, 17111–17120 (2013)

    Article  CAS  Google Scholar 

  35. Wang, X., Srisailam, S., Yee, A.A., Lemak, A., Arrowsmith, C., Prestegard, J.H., Tian, F.: Domain–domain motions in proteins from time-modulated pseudocontact shifts. J. Biomol. NMR 39, 53–61 (2007)

    Article  Google Scholar 

  36. Eichmüller, C., Skrynnikov, N.R.: Observation of μs time-scale protein dynamics in the presence of Ln3+ ions: application to the N-terminal domain of cardiac troponin C. J. Biomol. NMR 37, 79–95 (2006)

    Article  Google Scholar 

  37. John, M., Schmitz, C., Park, A.Y., Dixon, N.E., Huber, T., Otting, G.: Sequence-specific and stereospecific assignment of methyl groups using paramagnetic lanthanides. J. Am. Chem. Soc. 129, 13749–13757 (2007)

    Article  CAS  Google Scholar 

  38. Gaponenko, V., Sarma, S.P., Altieri, A.S., Horita, D.A., Li, J., Byrd, R.A.: Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints. J. Biomol. NMR 28, 205–212 (2004)

    Article  CAS  Google Scholar 

  39. Wöhnert, J., Franz, K.J., Nitz, M., Imperiali, B., Schwalbe, H.: Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J. Am. Chem. Soc. 125, 13338–13339 (2003)

    Article  Google Scholar 

  40. Martin, L.J., Hähnke, M.J., Nitz, M., Wöhnert, J., Silvaggi, N.R., Allen, K.N., Schwalbe, H., Imperiali, B.: Double-lanthanide-binding tags: design, photophysical properties, and NMR applications. J. Am. Chem. Soc. 129, 7106–7113 (2007)

    Article  CAS  Google Scholar 

  41. Ma, C., Opella, S.J.: Lanthanide ions bind specifically to an added “EF-Hand” and orient a membrane protein in micelles for solution NMR spectroscopy. J. Magn. Reson. 146, 381–384 (2000)

    Article  CAS  Google Scholar 

  42. Zhuang, T., Lee, H.S., Imperiali, B., Prestegard, J.H.: Structure determination of a Galectin-3–carbohydrate complex using paramagnetism-based NMR constraints. Protein Sci. 17, 1220–1231 (2008)

    Article  CAS  Google Scholar 

  43. Su, X.-C., Huber, T., Dixon, N.E., Otting, G.: Site-specific labelling of proteins with a rigid lanthanide-binding tag. ChemBioChem 7, 1599–1604 (2006)

    Article  CAS  Google Scholar 

  44. Su, X.C., McAndrew, K., Huber, T., Otting, G.: Lanthanide-binding peptides for NMR measurements of residual dipolar couplings and paramagnetic effects from multiple angles. J. Am. Chem. Soc. 130, 1681–1687 (2008)

    Article  CAS  Google Scholar 

  45. Barthelmes, K., Reynolds, A.M., Peisach, E., Jonker, H.R.A., DeNunzio, N.J., Allen, K.N., Imperiali, B., Schwalbe, H.: Engineering encodable lanthanide-binding tags into loop regions of proteins. J. Am. Chem. Soc. 133, 808–819 (2010)

    Article  Google Scholar 

  46. Barb, A.W., Subedi, G.P.: An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins. J. Biomol. NMR 64, 75–85 (2016)

    Article  CAS  Google Scholar 

  47. Saio, T., Ogura, K., Yokochi, M., Kobashigawa, Y., Inagaki, F.: Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect. J. Biomol. NMR 44, 157–166 (2009)

    Article  CAS  Google Scholar 

  48. Saio, T., Yokochi, M., Kumeta, H., Inagaki, F.: PCS-based structure determination of protein–protein complexes. J. Biomol. NMR 46, 271–280 (2010)

    Article  CAS  Google Scholar 

  49. Saio, T., Ogura, K., Shimizu, K., Yokochi, M., Burke Jr., T.R., Inagaki, F.: An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe. J. Biomol. NMR 51, 395–408 (2011)

    Article  CAS  Google Scholar 

  50. Kobashigawa, Y., Saio, T., Ushio, M., Sekiguchi, M., Yokochi, M., Ogura, K., Inagaki, F.: Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based protein–protein complex structure determination. J. Biomol. NMR 53, 53–63 (2012)

    Article  CAS  Google Scholar 

  51. Su, X.-C., Man, B., Beeren, S., Liang, H., Simonsen, S., Schmitz, C., Huber, T., Messerle, B.A., Otting, G.: A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J. Am. Chem. Soc. 130, 10486–10487 (2008)

    Article  CAS  Google Scholar 

  52. Dvoretsky, A., Gaponenko, V., Rosevear, P.R.: Derivation of structural restraints using a thiol-reactive chelator. FEBS Lett. 528, 189–192 (2002)

    Article  CAS  Google Scholar 

  53. Haberz, P., Rodriguez-Castañeda, F., Junker, J., Becker, S., Leonov, A., Griesinger, C.: Two new chiral EDTA-based metal chelates for weak alignment of proteins in solution. Org. Lett. 8, 1275–1278 (2006)

    Article  CAS  Google Scholar 

  54. Pintacuda, G., Moshref, A., Leonchiks, A., Sharipo, A., Otting, G.: Site-specific labelling with a metal chelator for protein–structure refinement. J. Biomol. NMR 29, 351–361 (2004)

    Article  CAS  Google Scholar 

  55. Prudêncio, M., Rohovec, J., Peters, J.A., Tocheva, E., Boulanger, M.J., Murphy, M.E.P., Hupkes, H.J., Kosters, W., Impagliazzo, A., Ubbink, M.: A caged lanthanide complex as a paramagnetic shift agent for protein NMR. Chem. Eur. J. 10, 3252–3260 (2004)

    Article  Google Scholar 

  56. Ikegami, T., Verdier, L., Sakhaii, P., Grimme, S., Pescatore, B., Saxena, K., Fiebig, K.M., Griesinger, C.: Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J. Biomol. NMR 29, 339–349 (2004)

    Article  CAS  Google Scholar 

  57. Leonov, A., Voigt, B., Rodriguez Castañeda, F., Sakhaii, P., Griesinger, C.: Convenient synthesis of multifunctional EDTA-based chiral metal chelates substituted with an S-mesylcysteine. Chem. Eur. J. 11, 3342–3348 (2005)

    Article  CAS  Google Scholar 

  58. Gaponenko, V., Altieri, A.S., Li, J., Byrd, R.A.: Breaking symmetry in the structure determination of (large) symmetric protein dimers. J. Biomol. NMR 24, 143–148 (2002)

    Article  CAS  Google Scholar 

  59. Vlasie, M.D., Comuzzi, C., van den Nieuwendijk, A.M.C.H., Prudêncio, M., Overhand, M., Ubbink, M.: Long-range-distance NMR effects in a protein labeled with a lanthanide–DOTA chelate. Chem. Eur. J. 13, 1715–1723 (2007)

    Article  CAS  Google Scholar 

  60. Häussinger, D., Huang, J.-R., Grzesiek, S.: DOTA-M8: an extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy. J. Am. Chem. Soc. 131, 14761–14767 (2009)

    Article  Google Scholar 

  61. Swarbrick, J.D., Ung, P., Su, X.-C., Maleckis, A., Chhabra, S., Huber, T., Otting, G., Graham, B.: Engineering of a bis-chelator motif into a protein α-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy. Chem. Commun. 47, 7368–7370 (2011)

    Article  CAS  Google Scholar 

  62. Swarbrick, J.D., Ung, P., Chhabra, S., Graham, B.: An iminodiacetic acid based lanthanide binding tag for paramagnetic exchange NMR spectroscopy. Angew. Chem. Int. Ed. 50, 4403–4406 (2011)

    Article  CAS  Google Scholar 

  63. Keizers, P.H.J., Desreux, J.F., Overhand, M., Ubbink, M.: Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J. Am. Chem. Soc. 129, 9292–9293 (2007)

    Article  CAS  Google Scholar 

  64. Keizers, P.H.J., Saragliadis, A., Hiruma, Y., Overhand, M., Ubbink, M.: Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment. J. Am. Chem. Soc. 130, 14802–14812 (2008)

    Article  CAS  Google Scholar 

  65. Liu, W.-M., Keizers, P.H.J., Hass, M.A.S., Blok, A., Timmer, M., Sarris, A.J.C., Overhand, M., Ubbink, M.: A pH-sensitive, colorful, lanthanide-chelating paramagnetic NMR probe. J. Am. Chem. Soc. 134, 17306–17313 (2012)

    Article  CAS  Google Scholar 

  66. Liu, W.-M., Skinner, S.P., Timmer, M., Blok, A., Hass, M.A.S., Filippov, D.V., Overhand, M., Ubbink, M.: A two-armed lanthanoid-chelating paramagnetic NMR probe linked to proteins via thioether linkages. Chem. Eur. J. 20, 6256–6258 (2014)

    Article  CAS  Google Scholar 

  67. Yang, Y., Li, Q.F., Cao, C., Huang, F., Su, X.-C.: Site-specific labeling of proteins with a chemically stable, high-affinity tag for protein study. Chem. Eur. J. 19, 1097–1103 (2013)

    Article  CAS  Google Scholar 

  68. Li, Q.F., Yang, Y., Maleckis, A., Otting, G., Su, X.-C.: Thiol–ene reaction: a versatile tool in site-specific labelling of proteins with chemically inert tags for paramagnetic NMR. Chem. Commun. 48, 2704–2706 (2012)

    Article  CAS  Google Scholar 

  69. Yang, Y., Wang, J.-T., Pei, Y.-Y., Su, X.-C.: Site-specific tagging proteins via a rigid, stable and short thiolether tether for paramagnetic spectroscopic analysis. Chem. Commun. 51, 2824–2827 (2015)

    Article  CAS  Google Scholar 

  70. Hikone, Y., Hirai, G., Mishima, M., Inomata, K., Ikeya, T., Arai, S., Shirakawa, M., Sodeoka, M., Ito, Y.: A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells. J. Biomol. NMR 66, 99–110 (2016)

    Article  CAS  Google Scholar 

  71. Loh, C.T., Ozawa, K., Tuck, K.L., Barlow, N., Huber, T., Otting, G., Graham, B.: Lanthanide tags for site-specific ligation to an unnatural amino acid and generation of pseudocontact shifts in proteins. Bioconjugate Chem. 24, 260–268 (2013)

    Article  CAS  Google Scholar 

  72. Saio, T., Ogura, K., Kumeta, H., Kobashigawa, Y., Shimizu, K., Yokochi, M., Kodama, K., Yamaguchi, H., Tsujishita, H., Inagaki, F.: Ligand-driven conformational changes of MurD visualized by paramagnetic NMR. Sci. Rep. 5, 16685 (2015)

    Article  CAS  Google Scholar 

  73. Nitz, M., Franz, K.J., Maglathlin, R.L., Imperiali, B.: A powerful combinatorial screen to identify high-affinity terbium(III)-binding peptides. ChemBioChem 4, 272–276 (2003)

    Article  CAS  Google Scholar 

  74. Nitz, M., Sherawat, M., Franz, K.J., Peisach, E., Allen, K.N., Imperiali, B.: Structural origin of the high affinity of a chemically evolved lanthanide-binding peptide. Angew. Chem. Int. Ed. 43, 3682–3685 (2004)

    Article  CAS  Google Scholar 

  75. Iwai, H., Züger, S.: Protein ligation: applications in NMR studies of proteins. Biotechnol. Genet. Eng. Rev. 24, 129–146 (2007)

    Article  CAS  Google Scholar 

  76. Kobashigawa, Y., Kumeta, H., Ogura, K., Inagaki, F.: Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. J. Biomol. NMR 43, 145–150 (2009)

    Article  CAS  Google Scholar 

  77. Schmitz, C., Stanton-Cook, M.J., Su, X.-C., Otting, G., Huber, T.: Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J. Biomol. NMR 41, 179–189 (2008)

    Article  CAS  Google Scholar 

  78. Schmitz, C., John, M., Park, A.Y., Dixon, N.E., Otting, G., Pintacuda, G., Huber, T.: Efficient χ-tensor determination and NH assignment of paramagnetic proteins. J. Biomol. NMR 35, 79–87 (2006)

    Article  CAS  Google Scholar 

  79. Rinaldelli, M., Carlon, A., Ravera, E., Parigi, G., Luchinat, C.: FANTEN: a new web-based interface for the analysis of magnetic anisotropy-induced NMR data. J. Biomol. NMR 61, 21–34 (2014)

    Article  Google Scholar 

  80. Bertini, I., Calderone, V., Cerofolini, L., Fragai, M., Geraldes, C.F.G.C., Hermann, P., Luchinat, C., Parigi, G., Teixeira, J.M.C.: The catalytic domain of MMP-1 studied through tagged lanthanides. FEBS Lett. 586, 557–567 (2012)

    Article  CAS  Google Scholar 

  81. Banci, L., Bertini, I., Cavallaro, G., Giachetti, A., Luchinat, C., Parigi, G.: Paramagnetism-based restraints for Xplor-NIH. J. Biomol. NMR 28, 249–261 (2004)

    Article  CAS  Google Scholar 

  82. Banci, L., Bertini, I., Huber, J.G., Luchinat, C., Rosato, A.: Partial orientation of oxidized and reduced cytochrome b5 at high magnetic fields: magnetic susceptibility anisotropy contributions and consequences for protein solution structure determination. J. Am. Chem. Soc. 120, 12903–12909 (1998)

    Article  CAS  Google Scholar 

  83. Güntert, P.: Automated NMR structure calculation with CYANA. In: Kristina Downing, A. (ed.) Protein NMR Techniques, pp. 353–378. Humana Press, New Jersey (2004)

    Google Scholar 

  84. Schmitz, C., Bonvin, A.M.J.J.: Protein–protein HADDocking using exclusively pseudocontact shifts. J. Biomol. NMR 50, 263–266 (2011)

    Article  CAS  Google Scholar 

  85. Schmitz, C., Vernon, R., Otting, G., Baker, D., Huber, T.: Protein structure determination from pseudocontact shifts using ROSETTA. J. Mol. Biol. 416, 668–677 (2012)

    Article  CAS  Google Scholar 

  86. Yagi, H., Pilla, K.B., Maleckis, A., Graham, B., Huber, T., Otting, G.: Three-dimensional protein fold determination from backbone amide pseudocontact shifts generated by lanthanide tags at multiple sites. Structure 21, 883–890 (2013)

    Article  CAS  Google Scholar 

  87. Pilla, K.B., Otting, G., Huber, T.: Pseudocontact shift-driven iterative resampling for 3D structure determinations of large proteins. J. Mol. Biol. 428, 522–532 (2016)

    Article  CAS  Google Scholar 

  88. Keizers, P.H.J., Mersinli, B., Reinle, W., Donauer, J., Hiruma, Y., Hannemann, F., Overhand, M., Bernhardt, R., Ubbink, M.: A solution model of the complex formed by adrenodoxin and adrenodoxin reductase determined by paramagnetic NMR spectroscopy. Biochemistry 49, 6846–6855 (2010)

    Article  CAS  Google Scholar 

  89. Guan, J.-Y., Keizers, P.H.J., Liu, W.-M., Löhr, F., Skinner, S.P., Heeneman, E.A., Schwalbe, H., Ubbink, M., Siegal, G.: Small-molecule binding sites on proteins established by paramagnetic NMR spectroscopy. J. Am. Chem. Soc. 135, 5859–5868 (2013)

    Article  CAS  Google Scholar 

  90. Künze, G., Köhling, S., Vogel, A., Rademann, J., Huster, D.: Identification of the glycosaminoglycan binding site of interleukin-10 by NMR spectroscopy. J. Biol. Chem. 291, 3100–3113 (2016)

    Article  Google Scholar 

  91. de la Cruz, L., Nguyen, T.H.D., Ozawa, K., Shin, J., Graham, B., Huber, T., Otting, G.: binding of low molecular weight inhibitors promotes large conformational changes in the dengue virus NS2B–NS3 protease: fold analysis by pseudocontact shifts. J. Am. Chem. Soc. 133, 19205–19215 (2011)

    Article  Google Scholar 

  92. Saio, T., Yokochi, M., Inagaki, F.: The NMR structure of the p62 PB1 domain, a key protein in autophagy and NF-κB signaling pathway. J. Biomol. NMR 45, 335–341 (2009)

    Article  CAS  Google Scholar 

  93. Schwieters, C.D., Kuszewski, J.J., Tjandra, N., Marius Clore, G.: The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003)

    Article  CAS  Google Scholar 

  94. Li, J., Pilla, K.B., Li, Q., Zhang, Z., Su, X., Huber, T., Yang, J.: Magic angle spinning NMR structure determination of proteins from pseudocontact shifts. J. Am. Chem. Soc. 135, 8294–8303 (2013)

    Article  CAS  Google Scholar 

  95. Crick, D.J., Wang, J.X., Graham, B., Swarbrick, J.D., Mott, H.R., Nietlispach, D.: Integral membrane protein structure determination using pseudocontact shifts. J. Biomol. NMR 61, 197–207 (2015)

    Article  CAS  Google Scholar 

  96. Bertrand, J.A., Fanchon, E., Martin, L., Chantalat, L., Auger, G., Blanot, D., van Heijenoort, J., Dideberg, O.: “Open” structures of MurD: domain movements and structural similarities with folylpolyglutamate synthetase. J. Mol. Biol. 301, 1257–1266 (2000)

    Article  CAS  Google Scholar 

  97. Bertrand, J.A., Auger, G., Martin, L., Fanchon, E., Blanot, D., Le Beller, D., van Heijenoort, J., Dideberg, O.: Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. J. Mol. Biol. 289, 579–590 (1999)

    Article  CAS  Google Scholar 

  98. Pan, B.-B., Yang, F., Ye, Y., Wu, Q., Li, C., Huber, T., Su, X.-C.: 3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy. Chem. Commun. 52, 10237–10240 (2016)

    Article  CAS  Google Scholar 

  99. Müntener, T., Häussinger, D., Selenko, P., Theillet, F.-X.: In-cell protein structures from 2D NMR experiments. J. Phys. Chem. Lett. 7, 2821–2825 (2016)

    Article  Google Scholar 

  100. Chen, J.-L., Wang, X., Yang, F., Cao, C., Otting, G., Su, X.-C.: 3D structure determination of an unstable transient enzyme intermediate by paramagnetic NMR spectroscopy. Angew. Chem. Int. Ed. 55, 13744–13748 (2016)

    Article  CAS  Google Scholar 

  101. Vallurupalli, P., Hansen, D.F., Kay, L.E.: Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 105, 11766–11771 (2008)

    Article  CAS  Google Scholar 

  102. Hass, M.A.S., Keizers, P.H.J., Blok, A., Hiruma, Y., Ubbink, M.: Validation of a lanthanide tag for the analysis of protein dynamics by paramagnetic NMR spectroscopy. J. Am. Chem. Soc. 132, 9952–9953 (2010)

    Article  CAS  Google Scholar 

  103. Hass, M.A.S., Liu, W.-M., Agafonov, R.V., Otten, R., Phung, L.A., Schilder, J.T., Kern, D., Ubbink, M.: A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy. J. Biomol. NMR 61, 123–136 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Yoshihiro Kobashigawa for providing the data for Fig. 8.4 and Dr. Hiromasa Yagi for helpful comments and careful reading of the manuscript. A part of this work was supported by Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program, Ministry of Education, Culture, Sports, Science and Technology, Japan. This work was also partly supported by JSPS KAKENHI Grant Number 15H01624 and 15K20829 and by JST, PRESTO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohide Saio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saio, T., Inagaki, F. (2018). Structural Study of Proteins by Paramagnetic Lanthanide Probe Methods. In: The Nuclear Magnetic Resonance Society of Japan (eds) Experimental Approaches of NMR Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-10-5966-7_8

Download citation

Publish with us

Policies and ethics