Skip to main content

Development of Biodegradable Bone Graft Substitutes Using 3D Printing

  • Chapter
  • First Online:
Developments and Applications of Calcium Phosphate Bone Cements

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 9))

Abstract

New manufacturing technologies using rapid prototyping or 3D printing enable the fabrication of free-form biomaterials/scaffolds for tissue regeneration. The printing technology can produce materials with computer-aided design of architecture, additives of inorganic/organic compositions, and connective pores with suitable pore sizes that are particularly important for bone tissue ingrowth and vascularization. Therefore, the available 3D printing techniques including vat polymerization (VP), powder bed fusion (PBF), material extrusion, and binder jetting are summarized in this chapter. The potential biomaterials for 3D printing are also discussed. Finally, 3D printing techniques are applied for various medical applications. Obviously, such techniques have paved ways in bone tissue engineering and regeneration and also in personalized medicine of clinical orthopedic and orthodontic practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cornell CN, Lane JM (1992) Newest factors in fracture healing. Clin Orthop Relat Res 277:297–311

    Google Scholar 

  2. Jahangir AA, Nunley RM, Mehta S, Sharan A (2008) Bone-graft substitutes in orthopaedic surgery. AAOS Now 2(1):35–37

    Google Scholar 

  3. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  Google Scholar 

  4. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine 20(9):1055–1060

    Article  Google Scholar 

  5. Khan MT, Stockley I, Ibbotson C (1998) Allograft bone transplantation: a Sheffield experience. Ann Roy Coll Surg 80(2):150

    Google Scholar 

  6. Heiple KG, Kendrick RE, Herndon CH, Chase SW (1967) A critical evaluation of processed calf bone. J Bone Joint Surg Am 49(6):1119–1127

    Article  Google Scholar 

  7. Luo Y, Lode A, Sonntag F et al (2013) Well-ordered biphasic calcium phosphate–alginate scaffolds fabricated by multi-channel 3D plotting under mild conditions. J Mater Chem B 1(33):4088–4098

    Article  Google Scholar 

  8. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36:S20–S27

    Article  Google Scholar 

  9. Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84(3):454–464

    Article  Google Scholar 

  10. Lee G-S, Park J-H, Shin US, Kim H-W (2011) Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater 7(8):3178–3186

    Article  Google Scholar 

  11. Bohner M (2007) Reactivity of calcium phosphate cements. J Mater Chem 17(38):3980–3986

    Article  Google Scholar 

  12. Brown WE, Chow LC (1986) US Patent No 4,612,053. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  13. Chow LC (1991) Development of self-setting calcium phosphate cements. J Ceram Soc Jpn 99(10):954–964

    Article  Google Scholar 

  14. Chohayeb AA, Chow LC, Tsaknis PJ (1987) Evaluation of calcium phosphate as a root canal sealer-filler material. J Endod 13(8):384–387

    Article  Google Scholar 

  15. Costantino PD, Friedman CD, Jones K et al (1991) Hydroxyapatite cement: I basic chemistry and histologic properties. Arch Otolaryngol–Head Neck Surg 117(4):379–384

    Article  Google Scholar 

  16. Friedman CD, Costantino PD, Jones K et al (1991) Hydroxyapatite cement: II obliteration and reconstruction of the cat frontal sinus. Arch Otolaryngol–Head Neck Surg 117(4):385–389

    Article  Google Scholar 

  17. Miyamoto Y, Ishikawa K, Fukao H et al (1995) In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials 16(11):855–860

    Article  Google Scholar 

  18. Ishikawa K, Takagi S, Chow LC, Ishikawa Y (1995) Properties and mechanisms of fast-setting calcium phosphate cements. J Mater Sci Mater Med 6(9):528–533

    Article  Google Scholar 

  19. Liu C, Gai W, Pan S, Liu Z (2003) The exothermal behavior in the hydration process of calcium phosphate cement. Biomaterials 24(18):2995–3003

    Article  Google Scholar 

  20. Liu C, Huang Y, Zheng H (1999) Study of the hydration process of calcium phosphate cement by AC impedance spectroscopy. J Am Ceram Soc 82(4):1052–1057

    Article  Google Scholar 

  21. Liu C, Shen W, Chen J (1999) Solution property of calcium phosphate cement hardening body. Mater Chem Phys 58(1):78–82

    Article  Google Scholar 

  22. Martin RB, Chapman MW, Holmes BE et al (1989) Effects of bone ingrowth on the strength and non-invasive assessment of a coralline hydroxyapatite material. Biomaterials 10(7):481–488

    Article  Google Scholar 

  23. Barralet JE, Grover L, Gaunt T, Wright AJ, Gibson IR (2002) Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials 23(15):3063–3072

    Article  Google Scholar 

  24. Deville S (2008) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10(3):155–169

    Article  Google Scholar 

  25. Hesarak S, Zamanian A, Moztarzadeh F (2008) The influence of the acidic component of the gas-foaming porogen used in preparing an injectable porous calcium phosphate cement on its properties: acetic acid versus citric acid. J Biomed Mater Res Part B: Appl Biomater 86B(1):208–216

    Article  Google Scholar 

  26. Miao X, Hu Y, Liu J, Wong AP (2004) Porous calcium phosphate ceramics prepared by coating polyurethane foams with calcium phosphate cements. Mater Lett 58(3):397–402

    Article  Google Scholar 

  27. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  Google Scholar 

  28. Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trend Biotechnol 22(12):643–652

    Article  Google Scholar 

  29. Klammert U, Reuther T, Jahn C et al (2009) Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater 5(2):727–734

    Article  Google Scholar 

  30. Habibovic P, Gbureck U, Doillon CJ et al (2008) Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29(7):944–953

    Article  Google Scholar 

  31. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378

    Article  Google Scholar 

  32. Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug deliver Rev 56(11):1635–1647

    Article  Google Scholar 

  33. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trend Biotechnol 22(7):354–362

    Article  Google Scholar 

  34. Popov VK, Evseev AV, Ivanov AL et al (2004) Laser stereolithography and supercritical fluid processing for custom-designed implant fabrication. J Mater Sci Mater Med 15(2):123–128

    Article  Google Scholar 

  35. Tan KH, Chua CK, Leong KF et al (2003) Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123

    Article  Google Scholar 

  36. Sherwood JK, Riley SL, Palazzolo R et al (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751

    Article  Google Scholar 

  37. Ang TH, Sultana FSA, Hutmacher DW et al (2002) Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system. Mater Sci Eng C 20(1):35–42

    Article  Google Scholar 

  38. Trombetta R, Inzana JA, Schwarz EM et al (2017) 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng 45(1):23–44

    Article  Google Scholar 

  39. Maruthappu M, Keogh B (2014) How might 3D printing affect clinical practice? BMJ 349:g7709

    Article  Google Scholar 

  40. Wu BM, Borland SW, Giordano RA et al (1996) Solid free-form fabrication of drug delivery devices. J Control Release 40(1–2):77–87

    Article  Google Scholar 

  41. Kim SS, Utsunomiya H, Koski JA et al (1998) Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg 228(1):8–13

    Article  Google Scholar 

  42. da Silva Bartolo PJ, de Lemos ACS, Pereira AMH et al (eds) (2013) High value manufacturing: advanced research in virtual and rapid prototyping: proceedings of the 6th international conference on advanced research in virtual and rapid prototyping. CRC Press, Leiria., 1–5 October

    Google Scholar 

  43. Tumbleston JR, Shirvanyants D, Ermoshkin N et al (2015) Continuous liquid interface production of 3D objects. Science 347(6228):1349–1352

    Article  Google Scholar 

  44. Williams JM, Adewunmi A, Schek RM et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  Google Scholar 

  45. Van der Stok J, Van der Jagt OP, Amin Yavari S et al (2013) Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. J Orthop Res 31(5):792–799

    Article  Google Scholar 

  46. Xia Y, Zhou P, Cheng X et al (2013) Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine 8:4197–4213

    Google Scholar 

  47. Schmidt M, Pohle D, Rechtenwald T (2007) Selective laser sintering of PEEK CIRP. Ann Manuf Tech 56(1):205–208

    Article  Google Scholar 

  48. Rimell JT, Marquis PM (2000) Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J Biomed Mater Res 53(4):414–420

    Article  Google Scholar 

  49. Kang HW, Lee SJ, Ko IK et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319

    Article  Google Scholar 

  50. Wu C, Luo Y, Cuniberti G et al (2011) Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater 7(6):2644–2650

    Article  Google Scholar 

  51. van der Stok J, Wang H, Amin Yavari S et al (2013) Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time-and dose-controlled delivery of dual growth factors. Tissue Eng Part A 19(23–24):2605–2614

    Article  Google Scholar 

  52. Kanczler JM, Mirmalek-Sani SH, Hanley NA et al (2009) Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater 5(6):2063–2071

    Article  Google Scholar 

  53. Antonov EN, Bagratashvili VN, Whitaker MJ et al (2005) Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Adv Mater 17(3):327–330

    Article  Google Scholar 

  54. Duan B, Wang M, Zhou WY et al (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505

    Article  Google Scholar 

  55. Tan KH, Chua CK, Leong KF et al (2005) Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 15(1–2):113–124

    Google Scholar 

  56. Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3(1):1–12

    Article  Google Scholar 

  57. Simpson RL, Wiria FE, Amis AA et al (2008) Development of a 95/5 poly (L-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res Part B: Appl Biomater 84(1):17–25

    Article  Google Scholar 

  58. http://wwwlboroacuk/research/amrg/about/the7categoriesofadditivemanufacturing/binderjetting/

  59. Wu C, Fan W, Zhou Y et al (2012) 3D-printing of highly uniform CaSiO 3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J Mater Chem 22(24):12288–12295

    Article  Google Scholar 

  60. Lin L, Huang X, Hu Q, Fang M (2006) Fabrication of tissue engineering scaffolds via rapid prototyping machine. International Technology and Innovation Conference (ITIC 2006), pp 1280–1285

    Google Scholar 

  61. Hesaraki S, Sharifi D (2007) Investigation of an effervescent additive as porogenic agent for bone cement macroporosity. BioMed Mater Eng 17(1):29–38

    Google Scholar 

  62. Tedder ME, Simionescu A, Chen J, et al. (2010) Assembly and testing of stem cell-seeded layered collagen constructs for heart valve tissue engineering. Tissue Eng Part A 17(1–2): 25–36

    Google Scholar 

  63. Schaefermeier PK, Szymanski D, Weiss F et al (2009) Design and fabrication of three-dimensional scaffolds for tissue engineering of human heart valves. Eur Surg Res 42(1):49–53

    Google Scholar 

  64. Sodian R, Schaefermeier P, Abegg-Zips S et al (2010) Use of human umbilical cord blood-derived progenitor cells for tissue-engineered heart valves. Ann Thorac Surg 89(3):819–828

    Google Scholar 

  65. Mano JF, Sousa RA, Boesel LF et al (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 64(6):789–817

    Google Scholar 

  66. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2006) Biomaterials science: an introduction to materials in medicine. MRS Bull:31–59

    Google Scholar 

  67. Kumar MNVR (2000) Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 3(2):234–258

    Google Scholar 

  68. Gollwitzer H, Thomas P, Diehl P et al (2005) Biomechanical and allergological characteristics of a biodegradable poly (D, L-lactic acid) coating for orthopaedic implants. J Orthop Res 23(4):802–809

    Google Scholar 

  69. Gbureck U, Hölzel T, Klammert U et al (2007) Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv Funct Mater 17(18):3940–3945

    Google Scholar 

  70. Gbureck U, Vorndran E, Barralet JE (2008) Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions. Acta Biomater 4(5):1480–1486

    Google Scholar 

  71. Sellers RS, Peluso D, Morris EA (1997) The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am 79(10):1452–1463

    Google Scholar 

  72. Sellers RS, Zhang R, Glasson SS et al (2000) Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am 82(2):151–160

    Google Scholar 

  73. Liu H, Peng H, Wu Y et al (2013) The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials 34(18):4404–4417

    Google Scholar 

  74. Street J, Bao M, Bunting S et al (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci 99(15):9656–9661

    Google Scholar 

  75. Poldervaart MT, Wang H, van der Stok J, Weinans H, Leeuwenburgh SC, Öner FC, Alblas J (2013) Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS One 8(8):e72610

    Google Scholar 

  76. Inzana JA, Trombetta RP, Schwarz EM et al (2015) 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cells Mater 30:232–247

    Google Scholar 

  77. Gao G, Schilling AF, Yonezawa T et al (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 9:1304–1311

    Google Scholar 

  78. Luo Y, Wu C, Lode A, Gelinsky M (2012) Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication 5(1):015005

    Google Scholar 

  79. Sobral JM, Caridade SG, Sousa RA et al (2011) Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 7(3):1009–1018

    Google Scholar 

  80. Detsch R, Uhl F, Deisinger U, Ziegler G (2008) 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. J Mater Sci Mater Med 19(4):1491–1496

    Google Scholar 

  81. Wu C, Luo Y, Cuniberti G et al (2011) Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater 7(6):2644–2650

    Google Scholar 

  82. Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 9(3):5521–5530

    Google Scholar 

  83. Seyednejad H, Gawlitta D, Kuiper RV et al (2012) In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly (ε-caprolactone). Biomaterials 33(17):4309–4318

    Google Scholar 

  84. Catros S, Fricain JC, Guillotin B et al (2011) Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3(2):025001

    Google Scholar 

  85. Doraiswamy A, Narayan RJ, Harris ML et al (2007) Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J Biomed Mater Res Part A 80(3):635–643

    Google Scholar 

  86. Harris ML, Doraiswamy A, Narayan RJ et al (2008) Recent progress in CAD/CAM laser direct-writing of biomaterials. Mater Sci Eng C 28(3):359–365

    Google Scholar 

  87. Guillotin B, Souquet A, Catros S et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250–7256

    Google Scholar 

  88. Pereira TF, Silva MAC, Oliveira MF et al (2012) Effect of process parameters on the properties of selective laser sintered poly (3-hydroxybutyrate) scaffolds for bone tissue engineering: this paper analyzes how laser scan spacing and powder layer thickness affect the morphology and mechanical properties of SLS-made scaffolds by using a volume energy density function. Virt Phys Prototyp 7(4):275–285

    Google Scholar 

  89. Shuai C, Gao C, Nie Y et al (2011) Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with aselective laser sintering system. Nanotechnology 22(28):285703

    Google Scholar 

  90. Lan PX, Lee JW, Seol YJ, Cho DW (2009) Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med 20(1):271–279

    Google Scholar 

  91. Lee JW, Ahn G, Kim DS, Cho DW (2009) Development of nano-and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron Eng 86(4):1465–1467

    Google Scholar 

  92. Ronca A, Ambrosio L, Grijpma DW (2013) Preparation of designed poly (D, L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater 9(4):5989–5996

    Google Scholar 

  93. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504

    Google Scholar 

  94. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C 23(5):611–620

    Google Scholar 

  95. Lam CX, Savalani MM, Teoh SH, Hutmacher DW (2008) Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater 3(3):034108

    Google Scholar 

  96. Lam CX, Teoh SH, Hutmacher DW (2007) Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium. Polym Inter 56(6):718–728

    Google Scholar 

  97. Schantz JT, Hutmacher DW, Lam CXF et al (2003) Repair of calvarial defects with customised tissue-engineered bone grafts II evaluation of cellular efficiency and efficacy in vivo. Tissue Eng 9(4, Supplement 1):127–139

    Google Scholar 

  98. Lam CX, Hutmacher DW, Schantz JT et al (2009) Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res Part A 90(3):906–919

    Google Scholar 

  99. Russias J, Saiz E, Deville S et al (2007) Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. J Biomed Mater Res Part A 83(2):434–445

    Google Scholar 

  100. Zeltinger J, Sherwood JK, Graham DA et al (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572

    Google Scholar 

  101. Frakes DH, Smith MJ, Parks J et al (2005) New techniques for the reconstruction of complex vascular anatomies from MRI images. J Cardiovasc Magn Reson 7:425–432

    Google Scholar 

  102. Chung H, Das S (2008) Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Mater Sci Eng A 487:251–257

    Google Scholar 

  103. Castilho M, Moseke C, Ewald A et al (2014) Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6:015006

    Google Scholar 

  104. Li C, Gao L, Chen F, Liu C (2015) Fabrication of mesoporous calcium silicate/calcium phosphate cement scaffolds with high mechanical strength based on rapid prototyping. J Mater Sci 50:7182–7191

    Google Scholar 

  105. Castilho M, Rodrigues J, Pires I et al (2015) Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication 7:015004

    Google Scholar 

  106. Igawa K, Mochizuki M, Sugimori O et al (2006) Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer. J Artif Organs 9:234–240

    Google Scholar 

  107. El-Ghannam A, Hart A, White D, Cunningham L (2013) Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique. J Biomed Mater Res A 101:2851–2861

    Google Scholar 

  108. Li C, Jiang C, Deng Y et al (2017) RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties. Sci Rep 7:41331

    Google Scholar 

  109. Inzana JA, Trombetta RP, Schwarz EM et al (2015) 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cell Mater 30:232–247

    Google Scholar 

  110. Akkineni AR, Luo Y, Schumacher M et al (2015) 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater 27:264–274

    Google Scholar 

  111. Kim GH, Son JG (2009) 3D polycarprolactone (PCL) scaffold with hierarchical structure fabricated by a piezoelectric transducer (PZT) -assisted bioplotter. Appl Phys A 94: 781–785

    Google Scholar 

  112. http://www.wakehealth.edu/WFIRM/

  113. Ozbolat I, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Google Scholar 

  114.  Ozbolat IT, Chen H, Yu Y (2014) Development of “Multi-arm Bioprinter” for hybrid biofabrication of tissue engineering constructs. Robot Comput Integr Manuf 30:295–304

    Google Scholar 

  115. Hellera M, Bauerb HK, Goetzec E et al (2016) Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration. Int J Comput Dent 19(4):301–321

    Google Scholar 

  116. http://www.economist.com/node/15543683

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhidao Xia or Hongyan He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Xia, Z., Shi, Y., He, H., Pan, Y., Liu, C. (2018). Development of Biodegradable Bone Graft Substitutes Using 3D Printing. In: Liu, C., He, H. (eds) Developments and Applications of Calcium Phosphate Bone Cements. Springer Series in Biomaterials Science and Engineering, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-10-5975-9_13

Download citation

Publish with us

Policies and ethics