Skip to main content

Part of the book series: Medicinal and Aromatic Plants of the World ((MAPW,volume 4))

Abstract

Traditional Chinese medicine (TCM) has a long history of using plant, animal, and fungal materials for their medicinal values. One of the better known and by far the most expensive of the Oriental medicines is the family of fungal-insect pairings known as Cordyceps. Different Cordyceps species, most notably Ophiocordyceps sinensis, have a long history of use and have been found growing only from the head of a subterranean caterpillar above 3000 m altitude on the Qinghai-Tibetan plateau. Environmental and ecological factors have driven O. sinensis to the status of an endangered species, with annual harvests steadily declining while at the same time the worldwide demand is ever increasing. This has driven the prices for O. sinensis into an ever-increasing spiral over the last decade, with top-quality Cordyceps currently valued at more than one hundred thousand US dollars per kilogram (100,000 USD) in the major Chinese cities. Its value today is literally higher than the price of gold. Such fantastic prices are driving research into cultivating O. sinensis and other Cordyceps species with an eye to making them more affordable for commercial trade. Aloha Medicinals in the United States is currently the largest cultivator of Cordyceps in the world producing an estimated half of all the Cordyceps annually consumed, but in addition to cultivating this rare fungus for the pharmaceutical trade, they are also involved in researching new species of Cordyceps from around the world with similar or identical medicinal properties as the classic species, O. sinensis. Recently, Aloha Medicinals expeditions into the Tingo Maria Valley in Peru have found that this area has the greatest diversity of Cordyceps species of any known location. More than 1000 types of Cordyceps have been found in Tingo Maria Valley so far, the vast majority of which have yet to be described or named. Currently, biotechnology companies around the world are cultivating about a dozen different species of Cordyceps for use in the pharmaceutical and nutraceutical sectors. With the discovery of the incredible diversity of entomogenous fungi in Peru, many new candidate species are now being researched for their medicinal properties and the potential for cultivation, in an effort to commercialization as substitutes for increasingly rare O. sinensis. As research continues to prove the wide range of medicinal properties claimed for Cordyceps, the potential for developing new medicinal Cordyceps species to replace the rare and endangered wild-collected O. sinensis has great potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cordyceps s.lat.:

Cordyceps sensu lato, meaning the broad group of insect-inhabiting fungi classed together as medicinally important species of fungi growing from the bodies of insects or occasionally truffles of the genus Elaphomyces.

TAR:

Tibetan Autonomous Region

References

  • Adotey G, Quarcoo A, Holliday JC, Fofie S, Saaka B (2011) Effect of immunomodulating and antiviral agent of medicinal mushrooms (immune assist 24/7 TM) on CD4+ T-lymphocyte counts of HIV-infected patients. Int J Med Mushr 13(2):109–113. doi:10.1615/IntJMedMushr.v13.i2.20

    Article  Google Scholar 

  • Battle J, Ha T, Li C, Della Beffa V, Rice P, Kalbfleisch J, Browder W, Williams D (1998) Ligand binding to the (1→3)-β-D-glucan receptor stimulates NFκB activation, but not apoptosis in U937 cells. Biochem Bioph Res Co 249(2):499–504. doi.org/10.1006/bbrc.1998.9175

    Article  CAS  Google Scholar 

  • Bensky D, Clavey S, Stoger E (2004) In: Chinese herbal medicine: materia medica, 3rd edn. Eastland Press, Seattle, p 770

    Google Scholar 

  • Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47(6):807–813

    Google Scholar 

  • Boesi A, Cardi F (2005) Wildlife and plants in traditional and modern Tibet: conceptions, exploitation and conservation. Soc Ital Sci Nat 34(1/2)

    Google Scholar 

  • Boesi A, Cardi F (2009) Cordyceps sinensis medicinal fungus: traditional use among Tibetan people, harvesting techniques, and modern uses. Herbal Gram 83:52–63

    Google Scholar 

  • Chen DG (1995) Effects of Jin Shui Bao capsule on the quality of life of patients with heart failure. J Admin Trad Chin Med 5:40–43

    Google Scholar 

  • Chen J, Seviour R (2007) Medicinal importance of fungal β-(1→ 3),(1→ 6)-glucans. Mycol Res 111(6):635–652. doi.org/10.1016/j.mycres.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Yin D, Li L, Zha X, Shuen J, Zhama C (2000) Resources and distribution of Cordyceps sinensis in Naqu Tibet. Zhong yao cai= Zhongyaocai= J Chin Med Mat 23(11):673–675

    CAS  Google Scholar 

  • Chen YQ, Wang N, Qu LH, Li TH, Zhang WM (2001) Determination of the anamorph of Cordyceps sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and 5.8 S rDNA. Biochem Syst Ecol 29(6):597–607. http://doi.org/10.1016/S0305-1978(00)00100-9

    Article  CAS  PubMed  Google Scholar 

  • Chen LS, Stellrecht CM, Gandhi V (2008) RNA directed agent, cordycepin, induces cell death in multiple myeloma cells. Brit J Haematol 140(6):682–391. doi:10.1111/j.1365-2141.2007.06955.x

    Article  CAS  Google Scholar 

  • Chen Y, Yang SH, Hueng DY, Syu JP, Liao CC, Wu YC (2014) Cordycepin induces apoptosis of C6 glioma cells through the adenosine 2A receptor-p53-caspase-7-PARP pathway. Chem Biol Interact 216:17–25. http://doi.org/10.1016/j.cbi.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Lim MH, Kim KM, Jeon BH, Song WO, Kim TW (2011) Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol Appl Pharmacol 257(2):165–173. doi.org/10.1016/j.taap.2011.08.030

    Article  CAS  PubMed  Google Scholar 

  • Cleaver PD, Holliday JC, Powers ML (2008) US Patent 8,008,060, Novel method for growing Cordyceps sinensis on a substrate and novel method for hybridizing different strains of Cordyceps sinensis. Issued August 2008

    Google Scholar 

  • Danielson ME, Dauth R, Elmasry NA, Langeslay RR, Magee AS, Will PM (2010) Enzymatic method to measure β-1, 3-β-1, 6-glucan content in extracts and formulated products (GEM assay). J Agri Food Chem 58(19):10305–10308. doi:10.1021/jf102003m

    Article  CAS  Google Scholar 

  • Das SK, Masuda M, Sakurai A, Sakakibara M (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81(8):961–968. http://doi.org/10.1016/j.fitote.2010.07.010

    Article  PubMed  Google Scholar 

  • Ding C, Tian PX, Xue W, Ding X, Yan H, Pan X, Feng X, Xiang H, Hou J, Tian X (2010) Efficacy of Cordyceps sinensis in long term treatment of renal transplant patients. Front Biosci (Elite Ed) 3:301–307. doi:10.2741/e245

    Google Scholar 

  • El Enshasy HA, Hatti-Kaul R (2013) Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol 31(12):668–677. http://doi.org/10.1016/j.tibtech.2013.09.003

    Article  PubMed  Google Scholar 

  • Gianotti BM, Cleaver MP, Mullins MN, West SY (2009) Preclinical evaluation of concurrent medicinal mushroom-based immune-enhancement supplementation in dogs undergoing chemotherapy for various cancers. Int J Med Mushr 11(2):167–184. doi:10.1615/IntJMedMushr.v11.i2.60

    Article  Google Scholar 

  • Guan YJ, Hu Z, Hou M (1992) Effect of Cordyceps sinensis on T-lymphocyte subsets in chronic renal failure. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi. Chin J Integrat Trad Western Med 12(6):338–339

    CAS  Google Scholar 

  • Guo YZ (1986) Medicinal chemistry, pharmacology and clinical applications of fermented mycelia of Cordyceps sinensis and Jin Shui Bao capsule. J Modern Diag Ther 1:60–65

    Google Scholar 

  • Halpern GM (1999) Cordyceps: China’s healing mushroom. Avery Publishing Group, New York

    Google Scholar 

  • Halpern GM (2007) Healing mushrooms. Square One Publishers, New York

    Google Scholar 

  • Halpern GM, Miller AP (2002) Medicinal mushrooms: ancient remedies for modern ailments. Rowman & Littlefield, Lanham, p 20706

    Google Scholar 

  • Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus 2(2):155–162. https://doi.org/10.5598/imafungus.2011.02.02.06

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsch KR, Smith-Ryan AE, Roelofs EJ, Trexler ET, Mock MG (2017) Cordyceps militaris improves tolerance to high-intensity exercise after acute and chronic supplementation. J Diet Suppl 14(1):42–53. http://dx.doi.org/10.1080/19390211.2016.1203386

    Article  CAS  Google Scholar 

  • Holliday JC, Cleaver MP (2008) Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) link (Ascomycetes). A review. Int J Med Mushr 10(3):219–234. doi:10.1615/IntJMedMushr.v10.i3.30

    Article  CAS  Google Scholar 

  • Holliday JC, Cleaver P, Loomis-Powers M, Patel D (2004) Analysis of quality and techniques for hybridization of medicinal fungus Cordyceps sinensis (Berk.) Sacc. (Ascomycetes). Int J Med Mushr 6(2):151–164. doi:10.1615/IntJMedMushr.v6.i2.60

    Article  CAS  Google Scholar 

  • Hsu TH, Shiao LH, Hsieh C, Chang DM (2002) A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom Dong Chong Xia Cao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chem 78(4):463–469. http://doi.org/10.1016/S0308-8146(02)00158-9

    Article  CAS  Google Scholar 

  • Hsu CH, Sun HL, Sheu JN, Ku MS, Hu CM, Chan Y, Lue KH (2008) Effects of the immunomodulatory agent Cordyceps militaris on airway inflammation in a mouse asthma model. Pediatr Neonatol 49(5):171–178. https://doi.org/10.1016/S1875-9572(09)60004-8

    Article  PubMed  Google Scholar 

  • Hsu JH, Jhou BY, Yeh SH, Chen YL, Chen CC (2015) Healthcare functions of Cordyceps cicadae. J Nutr Food Sci 5(6):1–7. doi:10.4172/2155-9600.1000432

    Article  Google Scholar 

  • Janeway CA (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13(1):1–16. doi.org/10.1016/0167-5699(92)90198-G

    Article  Google Scholar 

  • Jen CY, Lin CY, Huang BM, Leu SF (2010) Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis through caspase-9 pathway. Evid Based Compl Altern Med 2011:1–11. http://dx.doi.org/10.1093/ecam/nen084

    Google Scholar 

  • Jeong JW, Jin CY, Park C, Hong SH, Kim GY, Jeong YK, Lee JD, Yoo YH, Choi YH (2011) Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol In Vitro 25(4):817–824. doi.org/10.1016/j.tiv.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  • Jeong JW, Jin CY, Park C, Han MH, Kim GY, Moon SK, Kim CG, Jeong YK, Kim WJ, Lee JD, Choi YH (2012) Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int J Oncol 40(5):1697. doi:10.3892/ijo.2012.1332

    CAS  PubMed  Google Scholar 

  • Jia JM, Ma XC, Wu CF, Wu LJ, Hu GS (2005) Cordycedipeptide A, a new cyclodipeptide from the culture liquid of Cordyceps sinensis (Berk.) Sacc. Chem Pharm Bull 53(5):582–583. http://doi.org./10.1248/cpb.53.582

    Article  CAS  PubMed  Google Scholar 

  • Kennedy EM, Gavegnano C, Nguyen L, Slater R, Lucas A, Fromentin E, Schinazi RF, Kim B (2010) Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages. J Biol Chem 285(50):39380–39391. doi:10.1074/jbc.M110.178582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SW, Hwang HJ, Xu CP, Sung JM, Choi JW, Yun JW (2003) Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738. J Appl Microbiol 94(1):120–126. doi:10.1046/j.1365-2672.2003.01754.x

    Article  PubMed  Google Scholar 

  • Kim H, Naura AS, Errami Y, Ju J, Hamid Boulares A (2011) Cordycepin blocks lung injury-associated inflammation and promotes BRCA1-deficient breast cancer cell killing by effectively inhibiting PARP. Mol Med 17(9):893. doi:10.2119/molmed.2011.00032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko BS, Lu YJ, Yao WL, Liu TA, Tzean SS, Shen TL, Liou JY (2013) Cordycepin regulates GSK-3β/β-catenin signaling in human leukemia cells. PLoS One 8(9):e76320. doi.org/10.1371/journal.pone.0076320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnoff SB, Reátegui RF, Wagenaar MM, Gloer JB, Gibson DM (2005) Cicadapeptins I and II: new Aib-containing peptides from the entomopathogenic fungus Cordyceps heteropoda. J Nat Prod 68(1):50–55. doi:10.1021/np0497189

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Kim SK, Choi WS, Kim WJ, Moon SK (2009) Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Arch Biochem Biophys 490(2):103–109. doi.org/10.1016/j.abb.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Kim WJ, Moon SK (2010) Cordycepin suppresses TNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother Res 24(12):1755–1761

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Hong SM, Yun JY, Myoung H, Kim MJ (2011) Anti-cancer effects of cordycepin on oral squamous cell carcinoma proliferation and apoptosis in vitro. J Cancer Ther 2(02):224. doi:10.4236/jct.2011.22029

    Article  CAS  Google Scholar 

  • Lee HJ, Burger P, Vogel M, Friese K, Brüning A (2012) The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Investig New Drugs 30(5):1917–1925. doi:10.1007/s10637-012-9859-x

    Article  CAS  Google Scholar 

  • Lee HH, Jeong JW, Lee JH, Kim GY, Cheong J, Jeong YK, Yoo YH, Choi YH (2013a) Cordycepin increases sensitivity of Hep3B human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by inactivating the JNK signaling pathway. Oncol Rep 30(3):1257–1264. doi.org/10.3892/ijmm.2012.1173

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Debnath T, Kim SK, Lim BO (2013b) Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem Toxicol 60:439–447. doi.org/10.1016/j.fct.2013.07.068

    Article  CAS  PubMed  Google Scholar 

  • Lee HH, Hwang WD, Jeong JW, Park C, Han MH, Hong SH, Jeong YK, Choi YH (2014a) Induction of apoptosis and G2/M cell cycle arrest by cordycepin in human prostate carcinoma LNCap cells. J Life Sci 24(1):92–97. doi:10.5352/JLS.2014.24.1.92

    Article  Google Scholar 

  • Lee HH, Kim SO, Kim GY, Moon SK, Kim WJ, Jeong YK, Yoo YH, Choi YH (2014b) Involvement of autophagy in cordycepin-induced apoptosis in human prostate carcinoma LNCaP cells. Environ Toxicol Pharmacol 38(1):239–250. doi.org/10.1016/j.etap.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  • Lee HH, Park H, Sung GH, Lee K, Lee T, Lee I, Park MS, Jung YW, Shin YS, Kang H, Cho H (2014c) Anti-influenza effect of Cordyceps militaris through immunomodulation in a DBA/2 mouse model. J Microbiol 52(8):696–701. doi:10.1007/s12275-014-4300-0

    Article  PubMed  Google Scholar 

  • Li C (2004) Treatment of chronic viral hepatitis B with Jing shui bao and lamivudine: a report of 60 cases [J]. J Anhui Trad Chin Med Coll 2:008

    Google Scholar 

  • Li SP, Yang FQ, Tsim KW (2006) Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharma Biomed Analy 41(5):1571–1584. http://doi.org/10.1016/j.jpba.2006.01.046

    Article  CAS  Google Scholar 

  • Li Y, Li R, Zhu S, Zhou R, Wang L, Du J, Wang Y, Zhou B, Mai L (2015) Cordycepin induces apoptosis and autophagy in human neuroblastoma SK-N-SH and BE (2)-M17 cells. Oncol Lett 9(6):2541–2547. doi:10.3892/ol.2015.3066

    PubMed  PubMed Central  Google Scholar 

  • Lin BQ, Li SP (2011) Cordyceps as an herbal drug. In: Benzie IFF, Wachtel-Galor S (eds) Herbal medicine, biomolecular and clinical aspects, 2nd edn. CRC Press, Boca Raton, pp 73–105

    Chapter  Google Scholar 

  • Lo HC, Hsieh C, Lin FY, Hsu TH (2013) A systematic review of the mysterious caterpillar fungus Ophiocordyceps sinensis in Dong Chong Xia Cao (冬蟲夏草 Dōng Chóng Xià Cǎo) and related bioactive ingredients. J Trad Comp Med 3(1):16–32. http://doi.org/10.1016/S2225-4110(16)30164-X

    Google Scholar 

  • Lu L (2003) Study on effect of Cordyceps sinensis and artemisinin in preventing recurrence of lupus nephritis. Altern Med Rev 8(2):209–210. doi:10.1007/BF02934427

    Google Scholar 

  • Lu H, Li X, Zhang J, Shi H, Zhu X, He X (2014) Effects of cordycepin on HepG2 and EA. hy926 cells: potential antiproliferative, antimetastatic and anti-angiogenic effects on hepatocellular carcinoma. Oncol Lett 7(5):1556–1562. doi.org/10.3892/ijmm.2012.1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mang CY, Liu CP, Liu GM, Jiang B, Lan H, Wu KC, Yan Y, Li HF, Yang MH, Zhao Y (2015) Theoretical searches and spectral computations of preferred conformations of various absolute configurations for a cyclodipeptide, cordycedipeptide A from the culture liquid of Cordyceps sinensis. Spectrochim Acta Part A: Mol Biomol Spectro 136:1401–1408. http://doi.org/10.1016/j.saa.2014.10.028

    Article  CAS  Google Scholar 

  • McNeill J, Turland NJ (2011) Major changes to the code of nomenclature-Melbourne. Taxon 60(5):495–1497

    Google Scholar 

  • Megazyme International Ireland Limited (2008) Mushroom and yeast beta-glucan assay procedure manual, Megazyme Corp, IDA Business Park, Bray, Co. Wicklow, A98 YV29 Ireland

    Google Scholar 

  • Mizuno T (1999) Medicinal effects and utilization of Cordyceps (Fr.) link (Ascomycetes) and Isaria Fr.(Mitosporic fungi) Chinese caterpillar fungi. Int J Med Mushr 1(3):251–262. doi:10.1615/IntJMedMushrooms.v1.i3.80

    Article  CAS  Google Scholar 

  • Moyle B (2009) The black market in China for tiger products. Global Crime 10(1–2):124–143. http://dx.doi.org/10.1080/17440570902783921

    Article  Google Scholar 

  • Nakamura K, Yoshikawa N, Yamaguchi YU, Kagota S, Shinozuka K, Kunitomo M (2006) Antitumor effect of cordycepin (3′-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation. Anticancer Res 26(1A):43–47

    CAS  PubMed  Google Scholar 

  • Noh EM, Youn HJ, Jung SH, Han JH, Jeong YJ, Chung EY, Jung JY, Kim BS, Lee SH, Lee YR, Kim JS (2010) Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressing the MAPK/AP-1 pathway in MCF-7 human breast cancer cells. Int J Mol Med 25(2):255–260. doi:10.3892/ijmm_00000338

    CAS  PubMed  Google Scholar 

  • Pan BS, Lin C, Huang BM (2011) The effect of cordycepin on steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells. Evid Based Com Alter Med 2011:1–14. http://dx.doi.org/10.1155/2011/750468

    Google Scholar 

  • Park HW, Jun DY, Kim YH (2002) Apoptotic activity of insect pathogenic fungus Paecilomyces japonica toward human acute leukemia Jurkat T cells is associated with mitochondria-dependent caspase-3 activation regulated by bcl-2. J Microbiol Biotechnol 12(6):950–956

    CAS  Google Scholar 

  • Paterson RRM (2008) Cordyceps – a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69(7):1469–1495. http://doi.org/10.1016/j.phytochem.2008.01.027

    Article  CAS  PubMed  Google Scholar 

  • Pelleg A, Porter RS (1990) The pharmacology of adenosine. Pharmacother: J Hum Pharmacol Drug Ther 10(3):157–174

    CAS  Google Scholar 

  • Rao YK, Fang SH, Tzeng YM (2007) Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J Ethnopharmacol 114(1):78–85. http://doi.org/10.1016/j.jep.2007.07.028

    Article  CAS  PubMed  Google Scholar 

  • Relph D (1991) New Zealand geographic, 012, Oct-Dec 1991. Accessed at https://www.nzgeo.com/stories/caterpillar-killer/. 29 Mar 2017

  • Ruwei W, Yiyuan X, Peijun J, Wang X, Holliday J (2003) Clinical trial of immune-assist™ as an adjunct for chemo- and radiation therapy. http://www.ia-micron.com/IA_Mic_Cancer_Trial3.pdf. Accessed 29 Mar 2017

  • Ruwei W, Jianjun X, Hongpeng Z, Songhua L, Jin Y, Wang Y, Holliday J (2004) Phase 1 clinical trial on treatment of chronic Hepatitis B using immune assist brand dietary supplement as an adjunct with Lamivudine [Epivir], http://www.ia-micron.com/hepbstudy.pdf. Accessed 30 Mar 2017

  • Segelken R (2002) Cyclosporin mold’s “sexual state”found in New York forest Cornell students’ discovery could target additional sources of nature-based pharmaceuticals. Cornell Univ. Sci. News

    Google Scholar 

  • Shi P, Huang Z, Tan X, Chen G (2008) Proteomic detection of changes in protein expression induced by cordycepin in human hepatocellular carcinoma BEL-7402 cells. Methods Find Exp Clin Pharmacol 30(5):347–353. doi:10.1358/mf.2008.30.5.1186085

    Article  CAS  PubMed  Google Scholar 

  • Shrestha UB, Bawa KS (2013) Trade, harvest, and conservation of caterpillar fungus (Ophiocordyceps sinensis) in the Himalayas. Biol Conserv 159:514–520. http://doi.org/10.1016/j.biocon.2012.10.032

    Article  Google Scholar 

  • Shrestha S, Shrestha AK, Park JH, Lee DY, Cho JG, Shrestha B, Baek NI (2014) Review on pharmacologically active metabolites from Yarsagumba (Ophiocordyceps sinensis), an epitome of Himalayan elixir. Nepal J Sci Tech 14(2):49–58. http://dx.doi.org/10.3126/njst.v14i2.10415

    Google Scholar 

  • Singh M, Tulsawani R, Koganti P, Chauhan A, Manickam M, Misra K (2013) Cordyceps sinensis increases hypoxia tolerance by inducing heme oxygenase-1 and metallothionein via Nrf2 activation in human lung epithelial cells. Biomed Res Int 2013:1–13. http://dx.doi.org/10.1155/2013/569206

    Google Scholar 

  • Siu KM, Mak DH, Chiu PY, Poon MK, Du Y, Ko KM (2004) Pharmacological basis of ‘Yin-nourishing’ and ‘Yang-invigorating’ actions of Cordyceps, a Chinese tonifying herb. Life Sci 76(4):385–395. http://doi.org/10.1016/j.lfs.2004.07.014

    Article  CAS  PubMed  Google Scholar 

  • Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59. doi:10.3114/sim.2007.57.01

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomadaki H, Tsiapalis CM, Scorilas A (2008) The effect of the polyadenylation inhibitor cordycepin on human molt-4 and Daudi leukaemia and lymphoma cell lines. Cancer Chemother Pharmacol 61(4):703–711. doi:10.1007/s00280-007-0533-5

    Article  CAS  PubMed  Google Scholar 

  • Toda N, Okunishi H, Taniyama K, Miyazaki M (1982) Responses to adenine nucleotides and related compounds of isolated dog cerebral, coronary and mesenteric arteries. J Vasc Res 19(5):226–236

    Article  CAS  Google Scholar 

  • Tuli HS, Kumar G, Sandhu SS, Sharma AK, Kashyap D (2015) Apoptotic effect of cordycepin on A549 human lung cancer cell line. Turkish J Biol 39(2):306–311

    Article  CAS  Google Scholar 

  • Wang J, Liu YM, Cao W, Yao KW, Liu ZQ, Guo JY (2012a) Anti-inflammation and antioxidant effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis 27(2):159–165. doi:10.1007/s11011-012-9282-1

  • Wang SX, Liu Y, Zhang GQ, Zhao S, Xu F, Geng XL, Wang HX (2012b) Cordysobin, a novel alkaline serine protease with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Cordyceps sobolifera. J Biosci Bioeng 113(1):42–47. http://doi.org/10.1016/j.jbiosc.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Winkler D (2008) Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot 62(3):291–305. doi:10.1007/s12231-008-9038-3

    Article  Google Scholar 

  • Winkler D (2010) Cordyceps sinensis: a precious parasitic fungus infecting Tibet. Field Mycol 11(2):60–67. https://doi.org/10.1016/j.fldmyc.2010.04.009

    Article  Google Scholar 

  • Wojcikowski K, Johnson DW, Gobe G (2006) Herbs or natural substances as complementary therapies for chronic kidney disease: ideas for future studies. J Lab Clinical Med 147(4):160–166. http://doi.org/10.1016/j.lab.2005.11.011

    Article  Google Scholar 

  • Wright B (2012) Indian tiger is Tibet’s second skin. Conservation India. http://www.conservationindia.org/articles/indian-tiger-is-tibets-second-skin. Accessed 20 Apr 2017

  • Wu WC, Hsiao JR, Lian YY, Lin CY, Huang BM (2007) The apoptotic effect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemother Pharmacol 60(1):103–111. doi:10.1007/s00280-006-0354-y

    Article  CAS  PubMed  Google Scholar 

  • Xia F, Chen X, Guo MY, Bai XH, Liu Y, Shen GR, Li YL, Lin J, Zhou XW (2016) High-throughput sequencing-based analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity. Sci Rep 6:33437. doi:10.1038/srep33437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan XF, Zhang ZM, Yao HY, Guan Y, Zhu JP, Zhang LH, Jia YL, Wang RW (2013) Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors. Phytother Res 27(11):597–1604

    Article  Google Scholar 

  • Yang LY, Chen A, Kuo YC, Lin CY (1999) Efficacy of a pure compound H1-A extracted from Cordyceps sinensis on autoimmune disease of MRL lpr/lpr mice. J Lab Clin Med 134(5):492–500. http://doi.org/10.1016/S0022-2143(99)90171-3

    Article  CAS  PubMed  Google Scholar 

  • Yang FQ, Guan J, Li SP (2007) Fast simultaneous determination of 14 nucleosides and nucleobases in cultured Cordyceps using ultra-performance liquid chromatography. Talanta 73(2):269–273. http://doi.org/10.1016/j.talanta.2007.03.034

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa N, Yamada S, Takeuchi C, Kagota S, Shinozuka K, Kunitomo M, Nakamura K (2008) Cordycepin (3′-deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3β activation and cyclin D1 suppression. Naunyn Schmiedeberg’s Arch Pharmacol 377(4–6):591–595. doi:10.1007/s00210-007-0218-y

    Article  CAS  Google Scholar 

  • Yoshikawa N, Kunitomo M, Kagota S, Shinozuka K, Nakamura K (2009) Inhibitory effect of cordycepin on hematogenic metastasis of B16-F1 mouse melanoma cells accelerated by adenosine-5′-diphosphate. Anticancer Res 29(10):3857–3860

    CAS  PubMed  Google Scholar 

  • Yu L, Zhao J, Li SP, Fan H, Hong M, Wang YT, Zhu Q (2006) Quality evaluation of Cordyceps through simultaneous determination of eleven nucleosides and bases by RP-HPLC. J Sep Sci 29(7):953–958. doi:10.1002/jssc.200600007

    Article  CAS  PubMed  Google Scholar 

  • Yue K, Ye M, Zhou Z, Sun W, Lin X (2013) The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol 65:474–493. doi:10.1111/j.2042-7158.2012.01601.x

  • Zhang SS, Zhang DS, Zhu TJ, Chen XY (1990) A pharmacological analysis of the amino acid components of Cordyceps sinensis Sacc. Yao xue xue bao= Acta Pharm Sin 26(5):326–330

    Google Scholar 

  • Zhao J, Xie J, Wang LY, Li SP (2014) Advanced development in chemical analysis of Cordyceps. J Pharma Biomed Anal 87:271–289. http://doi.org/10.1016/j.jpba.2013.04.025

    Article  CAS  Google Scholar 

  • Zhong S, Pan H, Fan L, Lv G, Wu Y, Parmeswaran B, Pandey A, Soccol CR (2009) Advances in research of polysaccharides in Cordyceps species. Differences 13:14

    Google Scholar 

  • Zhong F, Liu X, Zhou Q, Hao X, Lu Y, Guo S, Wang W, Lin D, Chen N (2012) 1H NMR spectroscopy analysis of metabolites in the kidneys provides new insight into pathophysiological mechanisms: applications for treatment with Cordyceps sinensis. Nephrol Dial Transplant 27(2):556–565

    Article  PubMed  Google Scholar 

  • Zhou X, Gong Z, Su Y, Lin J, Tang K (2009) Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol 61(3):279–291. doi:10.1211/jpp/61.03.0002

    Article  CAS  PubMed  Google Scholar 

  • Zhu JS, Halpern G, Jones K (1998) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis. J Altern Complem Med [Part 1] 4 (3): 289–303 [part 2] 4 (4): 429–457

    Google Scholar 

  • Zhu F, Du B, Bian Z, Xu B (2015) Beta-glucans from edible and medicinal mushrooms: characteristics, physicochemical and biological activities. J Food Compos Anal 41:165–173. http://doi.org/10.1016/j.jfca.2015.01.019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Holliday .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holliday, J. (2017). Cordyceps: A Highly Coveted Medicinal Mushroom. In: Agrawal, D., Tsay, HS., Shyur, LF., Wu, YC., Wang, SY. (eds) Medicinal Plants and Fungi: Recent Advances in Research and Development. Medicinal and Aromatic Plants of the World, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-10-5978-0_3

Download citation

Publish with us

Policies and ethics