Skip to main content

Functional Nanomaterials Via Self-assembly Based Modification of Natural Cellulosic Substances

  • Chapter
  • First Online:
Supramolecular Chemistry of Biomimetic Systems

Abstract

Natural cellulose substances possess inherent sophisticated hierarchical structures and morphologies which are impossible to be created by artificial methods at the present time. Precise surface modification of cellulose matters with specific guest substances at the molecular and nanometer scales provides a facile shortcut to combine the unique physical properties of cellulose materials and specifically designed chemical functionalities to give a large variety of new nanomaterials for various practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanchezl C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288

    Article  Google Scholar 

  2. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531

    Article  Google Scholar 

  3. Caruso RA (2004) Micrometer-to-nanometer replication of hierarchical structures by using a surface sol–gel process. Angew Chem Int Ed 43:2746–2748

    Article  Google Scholar 

  4. Mann S (2009) Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 8:781–792

    Article  Google Scholar 

  5. Alava M, Niskanen K (2006) The physics of paper. Rep Prog Phys 69:669–723

    Article  Google Scholar 

  6. Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  Google Scholar 

  7. Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790

    Article  Google Scholar 

  8. Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobicmaterials: a critical review. Part 1. Cellulose. Cellulose 17:875–889

    Google Scholar 

  9. Vesel A, Mozetic M, Hladnik A et al (2007) Modification of ink-jet paper by oxygen-plasma treatment. J Phys D 40:3689–3696

    Article  Google Scholar 

  10. Balu B, Kim JS, Breedveld V et al (2009) Tunability of the adhesion of water droplets on a superhydrophobic paper surface via selective plasma etching. J Adhes Sci Technol 23:361–380

    Article  Google Scholar 

  11. Huang J, Kunitake T (2003) Nano-precision replication of natural cellulosic substances by metal oxides. J Am Chem Soc 125:11834–11835

    Article  Google Scholar 

  12. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  Google Scholar 

  13. Jia B, Mei Y, Cheng L et al (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces 4:2897–2902

    Article  Google Scholar 

  14. Gandinia A, Pasquini D (2012) The impact of cellulose fibre surface modification on some physico-chemical properties of the ensuing papers. Ind Crop Prod 35:15–21

    Article  Google Scholar 

  15. Zhang X, Huang J (2010) Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media. Chem Commun 46:6042–6044

    Article  Google Scholar 

  16. Gu Y, Liu X, Niu T et al (2010) Superparamagnetic hierarchical material fabricated by protein molecule assembly on natural cellulose nanofibers. Chem Commun 46:6096–6098

    Article  Google Scholar 

  17. Kemell M, Pore V, Ritala M et al (2005) Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites. J Am Chem Soc 127:14178–14179

    Article  Google Scholar 

  18. Kemell M, Pore V, Ritala M et al (2006) Ir/oxide/cellulose composites for catalytic purposes prepared by atomic layer deposition. Chem Vap Deposition 12:419–422

    Article  Google Scholar 

  19. Kemell M, Ritala M, Leskelä M et al (2008) Coating of highly porous fber matrices by atomic layer deposition. Chem Vap Deposition 14:347–352

    Article  Google Scholar 

  20. Jur JS, Sweet WJ III, Oldham CJ et al (2011) Atomic layer deposition of conductive coatings on cotton, paper, and synthetic fibers: conductivity analysis and functional chemical sensing using “all-fiber” capacitors. Adv Funct Mater 21:1993–2002

    Article  Google Scholar 

  21. Hyde GK, Scarel G, Spagnola JC et al (2009) Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. Langmuir 26:2550–2558

    Article  Google Scholar 

  22. Hyde GK, Park KJ, Stewart SM et al (2007) Atomic layer deposition of conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: effect of surface topology on film growth characteristics. Langmuir 23:9844–9849

    Article  Google Scholar 

  23. Liu X, Gu Y, Huang J (2010) Hierarchical, titania-coated, carbon nanofibrous material derived from a natural cellulosic substance. Chem Eur J 16:7730–7740

    Article  Google Scholar 

  24. Shin Y, Li XS, Wang C et al (2004) Synthesis of hierarchical titanium carbide from titania-coated cellulose paper. Adv Mater 16:1212–1215

    Article  Google Scholar 

  25. Kyotani M, Matsushita S, Kimura S et al (2012) Efficient preparation of carbon papers by pyrolysis of iodine-treated Japanese paper. J Anal Appl Pyrolysis 95:14–20

    Article  Google Scholar 

  26. Pelton R, Geng XL, Brook M (2006) Photocatalytic paper from colloidal TiO2–fact or fantasy. Adv Colloid Interface Sci 127:43–53

    Article  Google Scholar 

  27. Gimenez AJ, Yãnez-Limon JM, Seminario JM (2011) ZnO–paper based photoconductive UV sensor. J Phys Chem C 115:282–297

    Article  Google Scholar 

  28. Ghule K, Ghule AV, Chen BJ et al (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem 8:1034–1041

    Article  Google Scholar 

  29. Sun Q, Schork FJ, Deng Y (2007) Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating. Compos Sci Technol 67:1823–1829

    Article  Google Scholar 

  30. Ornatska M, Sharpe E, Andreescu D et al (2011) Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem 83:4273–4280

    Article  Google Scholar 

  31. Mahltig B, Fiedler D, Böttcher H (2004) Antimicrobial sol–gel coatings. J Sol-Gel Sci Tech 32:219–222

    Article  Google Scholar 

  32. Hou A, Shi Y, Yu Y (2009) Preparation of the cellulose/silica hybrid containing cationic group by sol–gel crosslinking process and its dyeing properties. Carbohydr Polym 77:201–205

    Article  Google Scholar 

  33. Xie K, Yu Y, Shi Y (2009) Synthesis and characterization of cellulose/silica hybrid materials with chemical crosslinking. Carbohydr Polym 78:799–805

    Article  Google Scholar 

  34. Rida A, Yang L, Vyas R et al (2009) Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications. IEEE Antenn Propag M 51:13–23

    Article  Google Scholar 

  35. Bayer IS, Fragouli D, Attanasio A et al (2011) Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl Mater Interfaces 3:4024–4031

    Article  Google Scholar 

  36. Small AC, Johnston JH (2008) Novel hybrid materials of cellulose fibres and doped ZnS nanocrystals. Curr Appl Phys 8:512–515

    Article  Google Scholar 

  37. Niu T, Gu Y, Huang J (2011) Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nanofibres. J Mater Chem 21:651–656

    Article  Google Scholar 

  38. Hwang SH, Moorefield CN, Wang P et al (2006) Construction of CdS quantum dots via a regioselective dendritic functionalized cellulose template. Chem Commun 3495–3497

    Google Scholar 

  39. Ding Z, Wei P, Chitnis G et al (2011) Ferrofluid-impregnated paper actuators. J Microelectromech Syst 20:59–64

    Article  Google Scholar 

  40. Fragouli D, Bayer IS, Corato RD et al (2012) Superparamagnetic cellulose fiber networks via nanocomposite functionalization. J Mater Chem 22:1662–1666

    Article  Google Scholar 

  41. Liu X, Zong C, Lu L (2012) Fluorescent silver nanoclusters for user-friendly detection of Cu2+ on a paper platform. Analyst 137:2406–2414

    Article  Google Scholar 

  42. Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21:2506–2514

    Article  Google Scholar 

  43. Huang J, Ichinose I, Kunitake T (2005) Nanocoating of natural cellulose fibers with conjugated polymer: hierarchical polypyrrole composite materials. Chem Commun 1717–1719

    Google Scholar 

  44. Varesano A, Aluigi A, Florio L et al (2009) Multifunctional cotton fabrics. Synth Met 159:1082–1089

    Article  Google Scholar 

  45. Vernitskaya TV, Efimov ON (1997) Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66:443–457

    Article  Google Scholar 

  46. Johnston JH, Kelly FM, Moraes J et al (2006) Conducting polymer composites with cellulose and protein fibres. Curr Appl Phys 6:587–590

    Article  Google Scholar 

  47. Kelly FM, Johnston JH, Borrmann T et al (2007) Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. Eur J Inorg Chem 5571–5577

    Google Scholar 

  48. Beneventi D, Alila S, Boufi S et al (2006) Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation-pyrrole polymerization sequence. Cellulose 13:725–734

    Article  Google Scholar 

  49. Olsson H, Carlsson DO, Nyström G et al (2012) Influence of the cellulose substrate on the electrochemical properties of paper-based polypyrrole electrode materials. J Mater Sci 47:5317–5325

    Article  Google Scholar 

  50. Zakirov AS, Yuldashev SU (2012) Functional hybrid materials derived from natural cellulose. J Korean Phys Soc 60:1526–1530

    Article  Google Scholar 

  51. Razaq A, Nyström G, Strømme M et al (2011) High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers. PLoS ONE 6:e29243

    Article  Google Scholar 

  52. Bhat NV, Seshadri DT, Nate MM et al (2006) Development of conductive cotton fabrics for heating devices. J Appl Polym Sci 102:4690–4695

    Article  Google Scholar 

  53. Dutta D, Sarma TK, Chowdhury D et al (2005) A polyaniline-containing filter paper that acts as a sensor, acid, base, and endpoint indicator and also filters acids and bases. J Colloid Interface Sci 283:153–159

    Google Scholar 

  54. Jagadeesan KK, Kumar S, Sumana G et al (2012) Application of conducting paper for selective detection of troponin. Electrochem Commun 20:71–74

    Article  Google Scholar 

  55. Johnston JH, Kelly FM, Burridge KA et al (2009) Hybrid materials of conducting polymers with natural fibers and silicates. Int J Nanotechnol 6:312–328

    Article  Google Scholar 

  56. Kawashima H, Shinotsuka M, Nakano M et al (2012) Fabrication of conductive paper coated with PEDOT: preparation and characterization. J Coat Technol Res 9:467–474

    Article  Google Scholar 

  57. Ichinose I, Kunitake T (1999) Polymerization-induced adsorption: a preparative method of ultrathin polymer films. Adv Mater 11:413–415

    Article  Google Scholar 

  58. Makela T, Jussila S, Vilkman M et al (2003) Roll-to-roll method for producing polyaniline patterns on paper. Synth Met 135–136:41–42

    Google Scholar 

  59. Zhou J, Fukawa T, Shirai H et al (2010) Anisotropic motion of electroactive papers coated with PEDOT/PSS. Macromol Mater Eng 295:671–675

    Article  Google Scholar 

  60. Winther-Jensen B, Clark N, Subramanian P et al (2007) Application of polypyrrole to flexible substrates. J Appl Polym Sci 104:3938–3947

    Article  Google Scholar 

  61. Sarrazin P, Valecce L, Beneventi D et al (2007) Photoluminescent paper based on poly(fluorene-co-fluorenone) particles adsorption on modified cellulose fibers. Adv Mater 19:3291–3294

    Article  Google Scholar 

  62. Zhang X, Shi F, Yu X et al (2004) Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J Am Chem Soc 126:3064–3065

    Article  Google Scholar 

  63. Lingström R, Wagberg L, Larsson P et al (2006) Formation of polyelectrolyte multilayers on fibers: influence on wettability and fibre/fibre interaction. J Colloid Interface Sci 296:396–408

    Article  Google Scholar 

  64. Lingström R, Notley SM, Wagberg L et al (2007) Wettability changes in the formation of polymeric multilayers on cellulose fibers and their influence on wet adhesion. J Colloid Interface Sci 314:1–9

    Article  Google Scholar 

  65. Nurmi L, Kontturi K, Houbenov N et al (2010) Modification of surface wettability through adsorption of partly fluorinated statistical and block polyelectrolytes from aqueous medium. Langmuir 26:15325–15332

    Article  Google Scholar 

  66. Nyström D, Lindqvist J, Östmark E et al (2006) Superhydrophobic bio-fiber surfaces via tailored grafting architecture. Chem Commun 3594–3596

    Google Scholar 

  67. Huang J, Gu Y (2011) Self-assembly of various guest substrates in natural cellulose substances to functional nanostructured materials. Curr Opin Colloid Interface Sci 16:470–481

    Article  Google Scholar 

  68. Aied A, Zheng Y, Pandit A et al (2012) DNA immobilization and detection on cellulose paper using a surface grown cationic polymer via ATRP. ACS Appl Mater Interfaces 4:826–831

    Article  Google Scholar 

  69. Carlmark A, Malmström EE (2012) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901

    Article  Google Scholar 

  70. Carlmark A, Malmström EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromol 4:1740–1745

    Article  Google Scholar 

  71. Lönnberg H, Zhou Q, Brumer H et al (2006) Grafting of cellulose fibers with poly(epsilon-caprolactone) and poly(L-latic acid) via ring-opening polymerization. Biomacromol 7:2178–2185

    Article  Google Scholar 

  72. Ibrahim K, Salminen A, Holappa S et al (2006) Preparation and characterization of PS-PEO amphiphilic block copolymers via atom transfer radical polymerization. J Appl Polym Sci 102:4304–4313

    Article  Google Scholar 

  73. Roy D, Knapp JS, Guthrie JT et al (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromol 9:91–99

    Article  Google Scholar 

  74. Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:10363–10372

    Article  Google Scholar 

  75. Perrier S, Takolpuckdee P, Westwood J et al (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37:2709–2717

    Article  Google Scholar 

  76. Li S, Xie H, Zhang S et al (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun 4857–4859

    Google Scholar 

  77. Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590

    Article  Google Scholar 

  78. Samyn P, Schoukens G, Van den Abbeele H et al (2011) Application of polymer nanoparticle coating for tuning the hydrophobicity of cellulosic substrates. J Coat Technol Res 8:363–373

    Article  Google Scholar 

  79. Stanssens D, Van den Abbeele H, Vonck L et al (2011) Creating water-repellent and super-hydrophobic cellulose substrates by deposition of organic nanoparticles. Mater Lett 65:1781–1784

    Article  Google Scholar 

  80. Mukhopadhyay SM, Joshi P, Datta S et al (2002) Plasma assisted hydrophobic coating on porous materials: influence of plasma parameters. J Phys D 35:1927–1933

    Article  Google Scholar 

  81. Vaswani S, Koskinen J, Hess DW (2005) Surface modification of paper and cellulose by plasma-assisted deposition of fluorocarbon films. Surf Coat Technol 195:121–129

    Article  Google Scholar 

  82. Mukhopadhyay SM, Joshi P, Datta S et al (2002) Plasma assisted surface coating of porous solids. Appl Surf Sci 201:219–226

    Article  Google Scholar 

  83. Kim JH, Liu G, Kim SH (2006) Deposition of stable hydrophobic coatings with in-line CH4 atmospheric rf plasma. J Mater Chem 16:977–981

    Article  Google Scholar 

  84. Tan IH, da Silva MLP, Demarquette NR (2001) Paper surface modification by plasma deposition of double layers of organic silicon compounds. J Mater Chem 11:1019–1025

    Article  Google Scholar 

  85. Li S, Wei Y, Huang J (2010) Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach. Chem Lett 39:20–21

    Article  Google Scholar 

  86. Cappelletto E, Callone E, Campostrini R et al (2012) Hydrophobic siloxane paper coatings: the effect of increasing methyl substitution. J Sol-Gel Sci Technol 62:441–452

    Article  Google Scholar 

  87. Yuan H, Nishiyama Y, Kuga S (2005) Surface esterification of cellulose by vapor-phase treatment with trifluoroacetic anhydride. Cellulose 12:543–549

    Article  Google Scholar 

  88. Jin C, Yan R, Huang J (2011) Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem 21:17519–17525

    Article  Google Scholar 

  89. Hu W, Liu S, Chen S et al (2011) Preparation and properties of photochromic bacterial cellulose nanofibrous membranes. Cellulose 18:655–661

    Article  Google Scholar 

  90. Jin C, Jiang T, Niu T et al (2012) Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem 22:12562–12567

    Article  Google Scholar 

  91. Balu B, Berry AD, Hess DW et al (2009) Patterning of superhydrophobic paper to control the mobility of micro-liter drops for two-dimensional lab-on-paper applications. Lab Chip 9:3066–3075

    Article  Google Scholar 

  92. Martinez AW, Phillips ST, Butte MJ et al (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320

    Article  Google Scholar 

  93. Martinez AW, Phillips ST, Carrilho E et al (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707

    Article  Google Scholar 

  94. Martinez AW, Phillips ST, Whitesides GM (2008) From the cover: three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 105:19606–19611

    Article  Google Scholar 

  95. Martinez AW, Phillips ST, Wiley BJ et al (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8:2146–2150

    Article  Google Scholar 

  96. Kong F, Ni Y (2009) Determination of Cr(VI) concentration in diluted samples based on the paper test strip method. Water Sci Technol 60:3083–3089

    Article  Google Scholar 

  97. Kong F, Ni Y (2009) Development of cellulosic paper-based test strips for Cr(Vi) determination. BioResources 4:1088–1097

    Google Scholar 

  98. Xiao W, Hu H, Huang J (2012) Colorimetric detection of cysteine by surface functionalization of natural cellulose substance. Sens Actuators, B 171–172:878–885

    Article  Google Scholar 

  99. Xu M, Bunes BR, Zang L (2011) Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface. ACS Appl Mater Interfaces 3:642–647

    Article  Google Scholar 

  100. Cha R, Wang D, He Z (2012) Development of cellulose paper testing strips for quick measurement of glucose. Carbohydr Polym 88:1414–1419

    Article  Google Scholar 

  101. Kwon H, Samain F, Kool ET (2012) Fluorescent DNAs printed on paper: sensing food spoilage and ripening in the vapor phase. Chem Sci 3:2542–2549

    Article  Google Scholar 

  102. Egusa S, Yokota S, Tanaka K et al (2009) Surface modification of a solid-state cellulose matrix with lactose by a surfactant-enveloped enzyme in a nonaqueous medium. J Mater Chem 19:1836–1842

    Article  Google Scholar 

  103. Brumer H, Zhou Q, Baumann MJ et al (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126:5715–5721

    Article  Google Scholar 

  104. Gustavsson MT, Persson PV, Iversen T et al (2005) Modification of cellulose fiber surfaces by use of a lipase and a xyloglucan endotransglycosylase. Biomacromol 6:196–203

    Article  Google Scholar 

  105. Huang J, Ichinose I, Kunitake T (2006) Biomolecular modification of hierarchical cellulose fibers through titania nanocoating. Angew Chem Int Ed 45:2883–2886

    Article  Google Scholar 

  106. Ye L, Filipe CDM, Kavoosi M et al (2009) Immobilization of TiO2 nanoparticles onto paper modification through bioconjugation. J Mater Chem 19:2189–2198

    Article  Google Scholar 

  107. Xiao W, Huang J (2011) Immobilization of oligonucleotides onto zirconia-modified filter paper and specific molecular recognition. Langmuir 27:12284–12288

    Article  Google Scholar 

  108. Koga H, Kitaoka T, Isogai A (2012) Paper-immobilized enzyme as a green microstructured catalyst. J Mater Chem 22:11591–11597

    Article  Google Scholar 

  109. Koga H, Kitaoka T, Isogai A (2011) In situ modification of cellulose paper with amino groups for catalytic applications. J Mater Chem 21:9356–9361

    Article  Google Scholar 

  110. Lu P, Hsieh YL (2010) Layer-by-layer self-assembly of Cibacron Blue F3GA and lipase on ultra-fine cellulose fibrous membrane. J Membr Sci 348:21–27

    Article  Google Scholar 

  111. Jarujamrus P, Tian J, Li X et al (2012) Mechanisms of red blood cells agglutination in antibody-treated paper. Analyst 137:2205–2210

    Article  Google Scholar 

  112. Martinez AW, Phillips ST, Whitesides GM et al (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  Google Scholar 

  113. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826

    Article  Google Scholar 

  114. Coltro WKT, de Jesus DP, da Silva JAF et al (2010) Toner and paper-based fabrication techniques for microfluidic applications. Electrophoresis 31:2487–2498

    Article  Google Scholar 

  115. Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133:17564–17566

    Article  Google Scholar 

  116. Khan MS, Thouas G, Shen W et al (2010) Paper diagnostic for instantaneous blood typing. Anal Chem 82:4158–4164

    Article  Google Scholar 

  117. Fu E, Lutz B, Kauffman P et al (2010) Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:918–920

    Article  Google Scholar 

  118. Hu L, Choi JW, Yang Y et al (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci U S A 106:21490–21494

    Article  Google Scholar 

  119. Hu L, Pasta M, Mantia FL et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    Article  Google Scholar 

  120. Hu L, Wu H, Mantia FL et al (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4:5843–5848

    Article  Google Scholar 

  121. Pushparaj VL, Shaijumon MM, Kumar A et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci U S A 104:13574–13577

    Article  Google Scholar 

  122. Gimenez AJ, Yáñez-Limón JM, Seminario JM (2011) Paper-based photoconductive infrared sensor. J Phys Chem C 115:18829–18834

    Article  Google Scholar 

  123. Nie Z, Nijhuis CA, Gong J et al (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10:477–483

    Article  Google Scholar 

  124. Weng Z, Su Y, Wang DW et al (2011) Graphene-cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922

    Article  Google Scholar 

  125. Anderson RE, Guan J, Ricard M et al (2010) Multifunctional single-walled carbon nanotube–cellulose composite paper. J Mater Chem 20:2400–2407

    Article  Google Scholar 

  126. Zheng G, Hu L, Wu H et al (2010) Paper supercapacitors by a solvent-free drawing method. Energy Environ Sci 4:3368–3373

    Article  Google Scholar 

  127. Nystrom G, Razaq A, Strømme M et al (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9:3635–3639

    Article  Google Scholar 

  128. Callone E, Fletcher JM, Carturan G et al (2008) A low-cost method for producing high-performance nanocomposite thin-films made from silica and CNTs on cellulose substrates. J Mater Sci 43:4862–4869

    Article  Google Scholar 

  129. Li J, Möhwald H, An Z et al (2005) Molecular assembly of biomimetic microcapsules. Soft Matt 1:259–264

    Article  Google Scholar 

  130. An Z, Möhwald H, Li J (2006) pH Controlled permeability of lipid/protein biomimetic microcapsules. Biomacromol 7:580–585

    Article  Google Scholar 

  131. He Q, Cui Y, Li J (2009) Molecular assembly and application of biomimetic microcapsules. Chem Soc Rev 38:2292–2303

    Article  Google Scholar 

  132. Jia Y, Li J (2015) Molecular assembly of schiff base interactions: construction and application. Chem Rev 115:1597–1621

    Article  Google Scholar 

  133. Li J, Jia Y, Dong W et al (2014) Transporting a tube in a tube. Nano Lett 14:6160–6164

    Article  Google Scholar 

  134. Chen B, Jia Y, Zhao J et al (2013) Assembled hemoglobin and catalase nanotubes for the treatment of oxidative stress. J Phys Chem C 117:19751–19758

    Google Scholar 

  135. Zhao J, Fei J, Gao L et al (2013) Bioluminescent microcapsules: applications in activating a photosensitizer. Chem Eur J 19:4548–4555

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Project on Basic Research of China (2009CB930104). J. Huang sincerely acknowledges the guidance and support of Prof. Toyoki Kunitake.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Li, S., Gu, Y., Huang, J. (2017). Functional Nanomaterials Via Self-assembly Based Modification of Natural Cellulosic Substances. In: Li, J. (eds) Supramolecular Chemistry of Biomimetic Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-6059-5_8

Download citation

Publish with us

Policies and ethics