Skip to main content

On the Role of Salicylic Acid in Plant Responses to Environmental Stresses

  • Chapter
  • First Online:
Salicylic Acid: A Multifaceted Hormone

Abstract

Salicylic acid (SA) is a plant hormone more commonly known by its role in human medicine than in the field of plant physiology. However, in the last two decades, SA has been described as an important signalling molecule in plants regulating growth, development and response to a wide number of biotic and abiotic stresses. Indeed, actually, it is well known that SA is a key signalling molecule involved in systemic acquired resistance (SAR), and recent works reported a role for SA in the response to salt or drought stresses.

The precise mode of the stress hormone SA action is unclear, although it has been shown to interact in a complex manner with the antioxidative metabolism, modulating cellular redox homeostasis and leading to changes in transcription factor activities and defence gene activation. In this sense, SA activates defence signalling pathway(s) through non-expressor of PR-protein 1 (NPR1), which is one of the few known redox-regulated proteins in plants.

Different synthetic chemicals are able to mimic the ability of SA to activate resistance to various stresses, both biotic and abiotic, in plants with agronomic interest. Among these chemicals, 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole (BTH) are the most widely studied compounds due to its ability to induce SAR.

In this chapter we present the role of SA and/or some of its structural analogues in the response to some biotic and abiotic challenges in relation to their effect in the antioxidative metabolism in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anfoka GH (2000) Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum mill cv.Vollendung) to cucumber mosaic virus. Crop Protect 19:401–405

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–379

    Article  CAS  PubMed  Google Scholar 

  • Aranega-Bou P, Leyva M, Finiti I, García-Agustín P, González-Bosch C (2014) Priming of plant resistance by natural compounds. Hexanoic acid as a model. Front Plant Sci 5:1–12

    Article  Google Scholar 

  • Barba-Espín G, Clemente-Moreno MJ, Álvarez S, García-Legaz MF, Hernández JA, Díaz-Vivancos P (2011) Salicylic acid negatively affects the response to salt stress in pea plants: effects on PR1b and MAPK expression. Plant Biol 13:909–917

    Article  PubMed  Google Scholar 

  • Bastam N, Baninasab B, Ghobadi C (2013) Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regul 69:275–284

    Article  CAS  Google Scholar 

  • Bechtold U, Lawson T, Mejia-Carranza J, Meyer RC, Brown IR, Altmann T, Ton J, Mullineaux PM (2010) Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the Arabidopsis accession C24. Plant Cell Environ 33:1959–1973

    Article  CAS  PubMed  Google Scholar 

  • Bektas Y, Eulgem T (2015) Synthetic plant defense elicitors. Front Plant Sci 5:1–17

    Article  Google Scholar 

  • Benhamou N (1996) Elicitor-induced plant defence pathways. Trends Plant Sci 1:233–240

    Article  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowling SA, Guo A, Cao H, Gordon AS, Klessig D, Dong X (1994) A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6:1845–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 8:1583–1592

    Article  Google Scholar 

  • Chen Z, Silva H, Klessing DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Moreno MJ, Diaz-Vivancos P, Barba-Espín G, Hernández JA (2010) Benzothiadiazole and l-2-oxothiazolidine-4-carboxylic acid reduced the severity of Sharka symptoms in pea leaves: effect on the antioxidative metabolism at the subcellular level. Plant Biol 12:88–97

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Moreno MJ, Diaz-Vivancos P, Piqueras A, Hernández JA (2012) Plant growth stimulation in Prunus species plantlets by BTH or OTC treatments under in vitro conditions. J Plant Physiol 169:1074–1083

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Moreno MJ, Diaz-Vivancos P, Rubio M, Fernandez N, Hernández JA (2013) Chloroplast protection in Plum Pox Virus-infected peach plants by l-2-oxo-4-thiazolidine-carboxylic acid treatments: effect in the proteome. Plant Cell Environ 36:640–654

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Chen Z, Ricigliano JR, Klessig DF (1995) Two inducers of plant defense responses, 2, 6-dichloroisonicotinec acid and salicylic acid, inhibit catalase activity in tobacco. Proc Natl Acad Sci U S A 92:7143–7147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001) Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol 107:113–119

    Article  CAS  Google Scholar 

  • Darras AI, Joyce DC, Ferry LA (2006) Acibenzolar-S-methyl and methyl jasmonate treatments of glasshouse-grown freesias suppress post-harvest petal specking caused by Botrytis cinerea. J Hort Sci Biotech 81:1043–1051

    Article  CAS  Google Scholar 

  • Delaney T, Friedrich L, Ryals J (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92:6602–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181–2191

    Article  PubMed  PubMed Central  Google Scholar 

  • Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 271:28492–28501

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Rella MG, Meier B, Dincher S, Staub T, Uknes S, Metraux JP, Kessmann H, Ryals J (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70

    Article  CAS  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Ann Rev Plant Biol 64:839–863

    Article  CAS  Google Scholar 

  • Gao QM, Kachroo A, Kachroo F (2014) Chemical inducers of systemic immunity in plants. J Exp Bot 65:1849–1855

    Article  CAS  PubMed  Google Scholar 

  • Garretón V, Carpinelli J, Jordana X, Holuigue L (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol 130:1516–1526

    Article  PubMed  PubMed Central  Google Scholar 

  • Gary EV, Goodman RM (2004) Systemic acquired resistance and induce systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Godard JF, Ziadi S, Monot C, Corre DL, Silue D (1999) Benzothiodiazole (BTH) induces resistance in cawliflower (Brassica oleraceae var. botrytis) to downy mildew of crucifers caused by Pronospora parasitica. Crop Prot 18:397–405

    Article  CAS  Google Scholar 

  • Goellner K, Conrath U (2008) Priming: it’s all the world to induced disease resistance. Eur J Plant Pathol 121:233–242

    Article  Google Scholar 

  • Görlach J, Volrath S, KnaufBeiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and diseas resistance in wheat. Plant Cell 8:629–643

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan L, Scandalios JG (1995) Developmentally related responses of maize catalase genes to salicylic acid. Proc Natl Acad Sci U S A 92:5930–5934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibi G (2012) Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biol Szeged 56:57–63

    Google Scholar 

  • Hafez YM, Fodor J, Kiraly Z (2004) Establishment of acquired resistance confers reduced levels of superoxide and hydrogen peroxide in TMV-infected tobacco leaves. Acta Phytopathol Entomol Hung 39:347–359

    Article  CAS  Google Scholar 

  • He Y, Zhu ZJ (2008) Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicun esculentum. Biol Plant 52:792–795

    Article  CAS  Google Scholar 

  • Iriti M, Faoro F (2003) Benzothiadiazole (BTH) induces cell-death independent resistance in Phaseolus vulgaris against Uromyces appendiculatus. J Phytopathol 151:171–180

    Article  CAS  Google Scholar 

  • Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY, Zhu YJ, Guo TC (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol Plant 57:718–724

    Article  CAS  Google Scholar 

  • Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J (1994) Induction of systemic acquired disease resistance in plants by chemicals. Annu Rev Phytopathol 32:439–459

    Article  CAS  PubMed  Google Scholar 

  • Khokon MDAR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443

    Article  CAS  PubMed  Google Scholar 

  • Knörzer OC, Lederer B, Durner J, Böger P (1999) Antioxidative defense activation in soybean cells. Physiol Plantarum 107:294–302

    Article  Google Scholar 

  • Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding and infiltration of water into leaves requires the NPR1/N1M1 gene in Arabidopsis. Plant Physiol 128:1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunz W, Schurter R, Maetzke T (1997) The chemistry of benzothiadiazole plant activators. Pestic Sci 50:275–282

    Article  CAS  Google Scholar 

  • Lawton KA, Friedrich L, Hunt M, Weymann K, Delaneyt T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

    Article  CAS  PubMed  Google Scholar 

  • Lee JS (1998) The mechanism of stomatal closing by salicylic acid in Commelina communis L. J Plant Biol 41:97–102

    Article  Google Scholar 

  • Lee S, Kim SG, Park CM (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188:627–637

    Article  Google Scholar 

  • Liu H, Jiang W, Bi Y, Luo Y (2005) Postharvest BTH treatment induces resistance of peach (Prunus persica L. cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms. Postharvest Biol Technol 35:263–269

    Article  CAS  Google Scholar 

  • Liu S, Dong Y, Kong XJ (2014) Effects of foliar application of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul 73:67–78

    Article  CAS  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    Article  CAS  PubMed  Google Scholar 

  • Malamy J, Sánchez-Casas P, Henning J, Guo A, Klessig DF (1996) Dissection of the salicylic acid signaling pathway. Mol Plant-Microbe Interact 9:474–482

    Article  CAS  Google Scholar 

  • Manohar M, Tian M, Moreau M, Park SW, Choi HW, Fei Z, Klessig DF (2015) Identification of multiple salicylic acid-binding proteins using two high throughput screens. Front Plant Sci 5:777

    Article  PubMed  PubMed Central  Google Scholar 

  • Mateo A, Funck D, Mühlenbock P, Kular B, Mullineaux PM, Karpinski S (2006) Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot 57:1795–1807

    Article  CAS  PubMed  Google Scholar 

  • May MJ, Vemoux T, Leaver C, Van Montagu M, Inza D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    CAS  Google Scholar 

  • Métraux JP, Ahl Goy P, Staub T, Speich J, Steinemann A, Ryals J, Ward E (1991) Induced systemic resistance in cucumber in response to 2,6-dichloro-isonicotinic acid and pathogens. In: Advances in molecular genetics of plant-microbe interactions. Kluwer Academic publishers, Dordrecht, pp 432–439

    Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:45

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104

    Article  CAS  PubMed  Google Scholar 

  • Molina A, Goerlach J, Volrath S, Ryals J (1999) Wheat genes encoding two types of PR-1 proteins are pathogen inducible, but do not respond to activators of systemic acquired resistance. Mol Plant-Microbe Interact 12:53–58

    Article  CAS  PubMed  Google Scholar 

  • Molina A, Bueno P, Marín MC, Rodriguez-Rosales MP, Belver A, Venema K, Donaire JP (2002) Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytol 156:409–415

    Article  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress. Electron transport, NADPH turnover and metabolism of reactive oxygen species. Ann Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  CAS  Google Scholar 

  • Moore AL, Albury MS, Crichton PG, Affourtit C (2002) Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci 7:478–481

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Pinontoan R, Kawano T, Muto S (2001) Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol 42:1383–1388

    Article  CAS  PubMed  Google Scholar 

  • Morris SW, Vernooij B, Titatarn S, Starret M, Thomas S, Wiltse CC, Fredriksen RA, Bhandhufalck A, Hulbert S, Uknes S (1998) Induced resistance responses in maize. Mol Plant-Microbe Interact 11:643–658

    Article  CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Munne-Bosch S, Penuelas J (2003) Photo-and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758–766

    Article  CAS  PubMed  Google Scholar 

  • Németh M, Janda T, Horváth E, Paldi E, Szalai G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    Article  Google Scholar 

  • Oostendorp M, Kunz W, Dietrich B, Staub T (2001) Induced disease resistance in plants by chemicals. Eur J Plant Pathol 107:19–28

    Article  CAS  Google Scholar 

  • Rajjou L, Belghazu M, Huget R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol 141:910–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. The Plant J 17:603–614

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Paliyat G, Ormrod D, Murr DP, Watkin CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress and H2O2 metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiol 115:137–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-SanVicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saruhan N, Saglam A, Kadioglu A (2012) Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiol Plant 34:97–106

    Article  CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Sklodowska M, Gajewska E, Kuźniak E, Mikicinski A, Sobiczewski P (2010) BTH-mediated antioxidant system responses in apple leaf tissues. Sci Hort 125:34–40

    Article  CAS  Google Scholar 

  • Sklodowska M, Gajewka E, Kuźniak E, Wielanek M, Mikiciński SP (2011) Antioxidant profile and polyphenol oxidase activities in apple leaves after Erwinia amylovora infection and pretreatment with a benzothiadiazole-type resistance inducer (BTH). J Phytopathol 159:495–504

    Article  CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:353–270

    Article  Google Scholar 

  • Szepesi A (2006) Salicylic acid improves the acclimation of Lycopersicon esculentum mill. L. to high salinity by approximating its salt stress response to that of the wild species L. pennellii. Acta Biologica Szegediensis 50:177

    Google Scholar 

  • Takatsuji H, Jiang CJ (2014) Plant hormone crosstalks under biotic stresses. In: Phytohormones: a window to metabolism, signaling and biotechnological applications, pp 323–350

    Google Scholar 

  • Tally A, Oostendorp M, Lawton K, Staub T, Bassi B (1999) Commercial development of elicitors of induced resistance to pathogens. In: Induced plant defenses against pathogens and herbivores, APS Press, St. Paul, pp 357–369

    Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  CAS  PubMed  Google Scholar 

  • Urbanek Krajnc A, Müller M (2006) An insight into the defense mechanisms and the role of flutathione furing advance ZYMV infection in Styrian oil pumpkin. Agricultura 4:27–35

    Google Scholar 

  • Van der Merwe JA, Dubery IA (2006) Benzothiadiazole inhibits mitochondrial NADH:ubiquinone oxidoreductase in tobacco. J Plant Physiol 163:877–882

    Article  PubMed  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Wendehenne D, Durner J, Chen Z, Klessig D (1998) Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry 47(651):657

    Google Scholar 

  • White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol Biol 64:293–303

    Article  CAS  PubMed  Google Scholar 

  • Xu E, Brosché M (2014) Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC Plant Biol 14:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Yalpani N, Silverman P, Wilson TM, Kleier DA, Raskin I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying Y, Yue Y, Huang X, Wang H, Mei L, Yu W, Zheng B, Wu J (2013) Salicylic acid induces physiological and biochemical changes in three Red bayberry (Myric rubra) genotypes under water stress. Plant Growth Regul 71:181–189

    Article  CAS  Google Scholar 

  • Yoshioka H, Bouteau F, Kawano T (2008) Discovery of oxidative burst in the field of plant immunity. Plant Signal Behav 3:143–155

    Article  Google Scholar 

Download references

Acknowledgements

PDV acknowledges the CSIC and the Spanish Ministry of Economy and Competitiveness for his ‘Ramon y Cajal’ research contract, cofinanced by FEDER funds. MJCM acknowledges the Spanish Ministry of Economy and Competitiveness for her ‘Juan de la Cierva’ research contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernández, J.A., Diaz-Vivancos, P., Barba-Espín, G., Clemente-Moreno, M.J. (2017). On the Role of Salicylic Acid in Plant Responses to Environmental Stresses. In: Nazar, R., Iqbal, N., Khan, N. (eds) Salicylic Acid: A Multifaceted Hormone. Springer, Singapore. https://doi.org/10.1007/978-981-10-6068-7_2

Download citation

Publish with us

Policies and ethics