Skip to main content

Polymeric Gels: Vehicles for Enhanced Drug Delivery Across Skin

  • Chapter
  • First Online:
Polymer Gels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Polymeric gels have emerged as promising vehicles for drug delivery across the skin. Stratum corneum, the topmost layer of the skin, does not allow hydrophilic and high molecular weight drugs to permeate without enhancing techniques. A number of enhancement techniques are being developed to increase the transdermal drug permeation. The transdermal route has many advantages and has therefore evolved as an attractive and convenient alternative to the existing routes of drug delivery that causes many side effects. In the present chapter, we shall be focusing on the physical enhancement techniques of iontophoresis, electroporation and sonophoresis for transport of drug molecules across skin using polymeric gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albery WJ, Hadgraft J (1979) Percutaneous absorption: theoretical description. J Pharm Pharmacol 31:129–139

    Article  PubMed  CAS  Google Scholar 

  • Alexander A, Dwivedi S, Ajazuddin GTK, Saraf S, Saraf S, Tripathi DK (2012) Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Rel 164:26–40

    Article  CAS  Google Scholar 

  • Aliyar H, Huber R, Loubert G, Schalau G (2014) Efficient ibuprofen delivery from anhydrous semisolid formulation based on a novel cross-linked silicone polymer network: an in vitro and in vivo study. J Pharm Sci 103:2005–2011

    Article  PubMed  CAS  Google Scholar 

  • Allenby AC, Fletcher J, Schock C, Tees TFS (1969) The effect of heat, pH and organic solvents on the electrical impedance and permeability of excised human skin. Br J Dermatol 81:31–39

    Article  CAS  Google Scholar 

  • Alvarez-Figueroa MJ, Blanco-Méndez J (2001) Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int J Pharm 215:57–65

    Article  PubMed  CAS  Google Scholar 

  • Arora A, Hakim I, Baxter J, Rathnasingham R, Srinivasan R, Fletcher DA, Mitragotri S (2007) Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc Natl Acad Sci USA 104:4255–4260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arunkumar S, Ashok P, Desai BG, Shivakumar HN (2015) Effect of chemical penetration enhancer on transdermal iontophoretic delivery of diclofenac sodium under constant voltage. J Drug Del Sci Technol 30:171–179

    Article  CAS  Google Scholar 

  • Azagury A, Khoury L, Enden G, Kost J (2014) Ultrasound mediated transdermal drug delivery. Adv Drug Del Rev 72:127–143

    Article  CAS  Google Scholar 

  • Bagniefski T, Burnette RR (1990) A comparison of pulsed and continuous current iontophoresis. J Control Rel 11:113–122

    Article  CAS  Google Scholar 

  • Banga AK, Chien YW (1998) Iontophoretic delivery of drugs: fundamentals, developments and biomedical applications. J Control Rel 7:1–24

    Article  Google Scholar 

  • Banga AK, Bose S, Ghosh TK (1999) Iontophoresis and electroporation: comparisons and contrasts. Int J Pharm 179:1–19

    Article  PubMed  CAS  Google Scholar 

  • Banga AK, Chien YW (1993) Hydrogel-based iontotherapeutic delivery devices for transdermal delivery of peptide/protein drugs. Pharm Res 10:697–702

    Article  PubMed  CAS  Google Scholar 

  • Bani D, Bencini A, Bergonzi MC, Bilia AR, Guccione C, Severi M, Udisti R, Valtancoli B (2015) Enhanced intra-cutaneous delivery of a Mn-containing antioxidant drug by high-frequency ultrasounds. J Pharm Biomed Anal 106:197–203

    Article  PubMed  CAS  Google Scholar 

  • Barry BW (1983) Properties that influence percutaneous absorption. In: Barry BW (ed) Dermatological formulations; percutaneous absorption. Marcel Dekker, New York, pp 127–233

    Google Scholar 

  • Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101–114

    Article  PubMed  CAS  Google Scholar 

  • Bashir SJ, Chew AL, Anigbogu A, Dreher F, Maibach HI (2001) Physical and physiological effects of stratum corneum tape stripping. Skin Res Technol 7:40–48

    Article  PubMed  CAS  Google Scholar 

  • Batheja P, Thakur R, Michniak B (2006) Transdermal iontophoresis. Expert Opin Drug Deliv 3:127–138

    Article  PubMed  Google Scholar 

  • Bhoyar TKGN, Tripathi DK, Alexander A, Ajazuddin (2012) Recent advances in novel drug delivery system through gels: review. J Pharm Allied Health Sci 2:21–39

    Google Scholar 

  • Blagus T, Markelc B, Cemazar M, Kosjek T, Preat V, Miklavcic D, Sersa G (2013) In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery. J Control Rel 172:862–871

    Article  CAS  Google Scholar 

  • Burnette RR, Ongpipattanakul B (1988) Characterisation of the pore transport properties and tissue alteration of excised human skin during iontophoresis. J Pharm Sci 77:132–137

    Article  PubMed  CAS  Google Scholar 

  • Cameroy BM (1966) Ultrasound enhanced local anesthesia. Am J Orthop 8:47

    Google Scholar 

  • Cevc G, Blumeb G, Schtitzlein A, Gebaue D, Paul A (1996) The skin: a pathway for systemic treatment with patches and lipid-based agent carriers. Adv Drug Deliv Rev 18:349–378

    Article  CAS  Google Scholar 

  • Chang F, Swartzendruber DC, Wertz PW, Squier CA (1993) Covalently bound lipids in keratinizing epithelia. Biochim Biophys Acta 1150:98–102

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Zahui T, Alberti I, Kalia YN (2016) Cutaneous biodistribution of ionizable, biolabile aciclovir prodrugs after short duration topical iontophoresis: targeted intraepidermal drug delivery. Eur J Pharm Biopharm 99:94–102

    Article  PubMed  CAS  Google Scholar 

  • Choi EH, Lee SH, Ahn SK, Hwang SM (1999) The pretreatment effect of chemical skin penetration enhancers in transdermal drug delivery using iontophoresis. Skin Pharmacol Appl Skin Physiol 12:326–335

    Article  PubMed  CAS  Google Scholar 

  • Christophers E, Schubert C, Goes M (1989) The epidermis. In: Greaves MW, Shuster S (eds) Pharmacology of the skin, vol I. Springer-Verlag, Berlin, pp 3–30

    Chapter  Google Scholar 

  • Christophers E, Wolff HH, Laurence EB (1974) The formation of epidermal cell columns. J Invest Dermatol 62:555–559

    Article  PubMed  CAS  Google Scholar 

  • Coodley GL (1960) Bursitis and post-traumatic lesions. Am Pract 11:181–187

    CAS  Google Scholar 

  • Coury AJ, Fogt EJ, Norenberg MS, Untereker DF (1983) Development of a screening system for cystic fibrosis. Clin Chem 29:1593–1597

    PubMed  CAS  Google Scholar 

  • Craane-van-Hinsberg WHM, Bax L, Flinterman NHM, Verhoef J, Junginger HE, Bodde HE (1994) Iontophoresis of a model peptide across human skin in vitro: effects of iontophoresis protocol, pH, and ionic strength on peptide flux and skin impedance. Pharm Res 11:1296–1300

    Article  PubMed  CAS  Google Scholar 

  • Cullander C (1992) What are the pathways of iontophoretic current flow through mammalian skin? Adv Drug Del Rev 9:119–135

    Google Scholar 

  • Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR (2004) Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech 37:1155–1163

    Article  PubMed  Google Scholar 

  • Denet AR, Preat V (2003) Transdermal delivery of timolol by electroporation through human skin. J Control Rel 88:253–262

    Article  CAS  Google Scholar 

  • Denet A-R, Vanbever R, Préat V (2004) Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 56:659–674

    Article  PubMed  CAS  Google Scholar 

  • DeNuzzio JD, Bemer B (1990) Electrochemical and iontophoretic studies of human skin. J Control Rel 11:105–112

    Article  CAS  Google Scholar 

  • Dinh SM, Luo C-W, Bemer B (1993) Upper and lower limits of human skin electrical resistance in iontophoresis. AIChE J 39:2011–2018

    Article  CAS  Google Scholar 

  • Donnelly RF, Singh TRR, Garland MJ, Migalska K, Majithiya R, McCrudden CM, Kole PR, Mahmood TMT, McCarthy HO, Woolfson AD (2012) Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater 22:4879–4890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donnelly RF, Singh TR, Alkilani AZ, McCrudden MT, O’Neill S, O’Mahony C, Armstrong K, McLoone N, Kole P, Woolfson AD (2013) Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. Int J Pharm 451:76–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  PubMed  CAS  Google Scholar 

  • Dujardin N, Staes E, Kalia Y, Clarys P, Guy R, Preat V (2002) In vivo assessment of skin electroporation using square wave pulses. J Control Rel 79:219–227

    Article  CAS  Google Scholar 

  • El Maghraby GMM, Williams AC, Barry BW (2006) Can drug-bearing liposomes penetrate intact skin? J Pharm Pharmacol 58:415–429

    Article  PubMed  CAS  Google Scholar 

  • Elias PM, Menon GK (1991) Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res 24:1–26

    Article  PubMed  CAS  Google Scholar 

  • Fang J-Y, Huang Y-B, Lin HH, Tsai Y-H (1998a) Transdermal iontphoresis of sodium nonivamide acetate IV: effect of polymer formulations. Int J Pharm 173:127–140

    Article  CAS  Google Scholar 

  • Fang J-Y, Huang Y-B, Wu PC, Tsai Y-H (1996) Transdermal iontphoresis of sodium nonivamide acetate II: optimisation and evaluation of solutions and gels. Int J Pharm 145:175–186

    Article  CAS  Google Scholar 

  • Fang J-Y, Kuo CT, Huang Y-B, Wu PC, Tsai Y-H (1998b) Transdermal iontphoresis of sodium nonivamide propionate by iontophoresis. Biol Pharm Bull 21:1117–1120

    Article  PubMed  CAS  Google Scholar 

  • Fang J-Y, Sung SC, Lin HH, Fang CL (1999) Transdermal iontophoretic delivery of diclofenac sodium from various polymer formulations: in vitro and in vivo studies. Int J Pharm 178:83–92

    Article  PubMed  CAS  Google Scholar 

  • Fellinger K, Schmidt J (1954) Klinik and Therapies des Chromischen Gelenkreumatismus. Maudrich Vienna, Austria, pp 549–552

    Google Scholar 

  • Gehrke SH, Lee PI (1990) Hydrogels for drug delivery. In: Tyle P (ed) Specialized drug delivery systems, manufacturing and production technology. Marcel Dekker, New York, pp 333–392

    Google Scholar 

  • Golberg A, Rubinsky B (2012) Towards electroporation based treatment planning considering electric field induced muscle contractions. Technol Cancer Res Treat 11:189–201

    Article  PubMed  Google Scholar 

  • Gong JP, Komatsu N, Nitta T, Osada Y (1997) Electrical conductance of polyelectrolyte gels. J Phys Chem B 101:740–745

    Article  CAS  Google Scholar 

  • Gratieri T, Alberti I, Lapteva M, Kalia YN (2013) Next generation intra- and transdermal therapeutic systems: using non- and minimally-invasive technologies to increase drug delivery into and across the skin. Eur J Pharm Sci 18:609–622

    Article  CAS  Google Scholar 

  • Gupta J, Prausnitz MR (2009) Recovery of skin barrier properties after sonication in human subjects. Ultrasound Med Biol 35:1405–1408

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta SK, Kumar S, Bolton S, Behl CR (1994) Optimization of iontophoretic transdermal delivery of a peptide and a non-peptide drug. J Control Rel 30:253–261

    Article  CAS  Google Scholar 

  • Guy RH (1996) Current status and future prospects of transdermal drug delivery. Pharm Res 13:1765–1769

    Article  PubMed  CAS  Google Scholar 

  • Guy RH (1998) Iontophoresis−recent developments. J Pharm Pharmacol 50:371–374

    Article  PubMed  CAS  Google Scholar 

  • Guy RH, Hadgraft J (1991) Principles of skin permeability relevant to chemical exposure. In: Hobson DW (ed) Dermal and ocular toxicology: fundamentals and methods. CRC Press, Boca-Raton, FL, pp 221–246

    Google Scholar 

  • Hao J (2014) Topical iontophoresis for local therapeutic effects. J Drug Del Sci Technol 24:255–258

    Article  CAS  Google Scholar 

  • Heller R, Gilbert R, Jaroszeski MJ (1999) Clinical applications of electrochemotherapy. Adv Drug Del Rev 35:119–129

    Article  CAS  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  • Hofmann GA, Dev SB, Nanda GS (1996) Electrochemotherapy: transition from laboratory to the clinic. IEEE Eng Med Biol Mag 15:124–132

    Article  Google Scholar 

  • Hofmann GA, Rustrum WV, Suder KS (1995) Electro-incorporation of microcarriers as a method for the transdermal delivery of large molecules. Bioelectrochem Bioenerg 38:209–222

    Article  CAS  Google Scholar 

  • Huang J-F, Sung KC, Hu OY-P, Wang J-J, Lin Y-H, Fang J-Y (2005) The effects of electrically assisted methods on transdermal delivery of nalbuphine benzoate and sebacoyl dinalbuphine ester from solutions and hydrogels. Int J Pharm 29:162–171

    Google Scholar 

  • Inada H, Ghanem A-H, Higuchi WI (1994) Studies on the effects of applied voltage and duration on human epidermal membrane alteration/recovery and the resultant effects upon iontophoresis. Pharm Res 11:687–697

    Article  PubMed  CAS  Google Scholar 

  • Indulekha S, Arunkumar P, Bahadur D, Srivastava R (2016) Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management. Material Sci Engg: C 62:113–122

    Article  CAS  Google Scholar 

  • Ita KB (2014) Transdermal drug delivery: progress and challenges. J Drug Delivery Sci Technol 24:245–250

    Article  CAS  Google Scholar 

  • Jadoul A, Bouwstra J, Preat V (1999) Effects of iontophoresis and electroporation on the stratum corneum: review of the biophysical studies. Adv Drug Del Rev 35:89–105

    Article  CAS  Google Scholar 

  • Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21:27–47

    CAS  Google Scholar 

  • Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54:37–51

    Article  PubMed  CAS  Google Scholar 

  • Jeong WL, Park JH, Prausnitz MR (2008) Dissolving microneedles for transdermal drug delivery. Biomaterials 29:2113

    Article  CAS  Google Scholar 

  • Jepps OG, Dancik Y, Anissimov YG, Roberts MS (2013) Modeling the human skin barrier—towards a better understanding of dermal absorption. Adv Drug Del Rev 65:152–168

    Article  CAS  Google Scholar 

  • Jiang H, Tovar-Carrillo K, Kobayashi T (2016) Ultrasound stimulated release of mimosa medicine from cellulose hydrogel matrix. Ultrason Sonochem 32:398–406

    Article  PubMed  CAS  Google Scholar 

  • Jodar KSP, Balcao VM, Chaud MV, Tubino M, Yoshida VMH, Oliveira JM Jr, Vila MMDC (2015) Development and characterization of a hydrogel containing silver sulfadiazine for antimicrobial topical applications. J Pharm Sci 104:2241–2254

    Article  PubMed  CAS  Google Scholar 

  • Johnson PG, Gallo SA, Hui SW, Oseroff AR (1998) A pulsed electric field enhances cutaneous delivery of methylene blue in excised full-thickness porcine skin. J Invest Dermatol 111:457–463

    Article  PubMed  CAS  Google Scholar 

  • Kalia Y, Nonato LB, Guy RH (1996) The effect of iontophoresis on skin barrier integrity: non-invasive evaluation by impedance spectroscopy and transepidermal water loss. Pharm Res 13:957–961

    Article  PubMed  CAS  Google Scholar 

  • Kalia YN, Merino V, Guy RH (1998) Transdermal drug delivery: clinical aspects. Dermatol Clin 16:289–299

    Article  PubMed  CAS  Google Scholar 

  • Kalia YN, Naik A, Garrison J, Guy RH (2004) Iontophoretic drug delivery. Adv Drug Deliv Rev 56:619–658

    Article  PubMed  CAS  Google Scholar 

  • Karande P, Jain A, Mitragotri S (2004) Discovery of transdermal penetration enhancers by high-throughput screening. Nat Biotechnol 22:192–197

    Google Scholar 

  • Kearney M-C, Caffarel-Salvador E, Fallows SJ, McCarthy HO, Donnelly RF (2016) Microneedle-mediated delivery of donepezil: potential for improved treatment options in Alzheimer’s disease. Eur J Pharm Biopharm 103:43–50

    Article  PubMed  CAS  Google Scholar 

  • Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi A, Okano T (2002) Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev 54:53–77

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Choi S, Kwak Y (2012) The effect of SonoPrep on EMLA cream application for pain relief prior to intravenous cannulation. Eur J Pediatr 171:985–988

    Article  PubMed  CAS  Google Scholar 

  • Kong BJ, Kim A, Park SN (2016) Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohyd Polym 147:473–481

    Article  CAS  Google Scholar 

  • Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kost J, Katz N, Shapiro D, Herr_mann T, Kellogg S, Warner N, Custer L (2003) Ultrasound skin permeation pretreatment to accelerate the onset of topical anesthesia. Proc Inter Symp Bioact Mater

    Google Scholar 

  • Kost J, Langer R (2001) Responsive polymeric delivery systems. Adv Drug Deliv Rev 53:125–148

    Article  Google Scholar 

  • Lane ME (2013) The transdermal delivery of fentanyl. Eur J Pharm Biopharm 84:449–455

    Article  PubMed  CAS  Google Scholar 

  • Langer R (2003) Where a pill won’t go. Sci Am 288:50–57

    Article  PubMed  Google Scholar 

  • Langer R (2004) Transdermal drug delivery: past progress, current status and future prospects. Adv Drug Del Rev 56:557–558

    Article  CAS  Google Scholar 

  • Langkjaer L, Brange J, Grodsky GM, Guy RH (1998) Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment. J Control Rel 51:47–56

    Article  CAS  Google Scholar 

  • Lark MR, Gangarosa LP Sr (1990) Iontophoresis: an effective modality for the treatment of inflammatory disorders of the temporomandibular joint and myofascial pain. Cranio 8:108–119

    Article  PubMed  CAS  Google Scholar 

  • Law S, Wertz PW, Swartzendruber DC, Squier CA (1995) Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy. Arch Oral Biol 40:1085–1091

    Article  PubMed  CAS  Google Scholar 

  • Le L, Kost J, Mitragotri S (2000) Combined effect of low-frequency ultrasound and iontophoresis: applications for transdermal heparin delivery. Pharm Res 17:1151–1154

    Article  PubMed  CAS  Google Scholar 

  • Leduc S (1900) Introduction of medicinal substances into the depth of tissues by electric current. Ann d’ Electrobiol 3:545–560

    Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Newnham RE, Smith NB (2004a) Short ultrasound exposure times for noninvasive insulin delivery in rats using the lightweight cymbal array. IEEE Trans Ultrason Ferroelectr Freq Control 51:176–180

    Article  PubMed  Google Scholar 

  • Lee S, Snyder B, Newnham RE, Smith NB (2004b) Non-invasive ultrasonic transdermal insulin delivery in rabbits using the light-weight cymbal array. Diabetes Technol Ther 6:808–815

    Article  PubMed  CAS  Google Scholar 

  • Levy D, Kost J, Meshulam Y, Langer R (1989) Effect of ultrasound on transdermal drug delivery to rats and guinea pigs. J Clin Invest 83:2074–2078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez RFV, Seto JE, Blankschtein D, Langer R (2011) Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials 32:933–941

    Article  PubMed  CAS  Google Scholar 

  • Luis J, Park EJ, Meyer RJ, Smith NB (2007) Rectangular cymbal arrays for improved ultrasonic transdermal insulin delivery. J Acoust Soc Am 122:2022–2030

    Article  PubMed  CAS  Google Scholar 

  • Maione E, Shung KK, Meyer RJ Jr, Hughes JW, Newnham RE, Smith NB (2002) Transducer design for a portable ultrasound enhanced transdermal drug-delivery system. IEEE Trans Ultrason Ferroelectr Freq Control 49:1430–1436

    Article  PubMed  Google Scholar 

  • Menczel E (1985) Skin delipidization and percutaneous absorption. In: Bronaugh RL, Maibach HI (eds) Percutaneous absorption: mechanisms–methodology–drug delivery. Marcel Dekker, New York, pp 231–242

    Google Scholar 

  • Meshali M, Abdel-Aleem H, Sakr F, Nazzal S, El-Malah Y (2011) Effect of gel composition and phonophoresis on the transdermal delivery of ibuprofen: in vitro and in vivo evaluation. Pharm Dev Technol 16:93–101

    Article  PubMed  CAS  Google Scholar 

  • Mitragotri S (2000) Synergistic effect of enhancers for transdermal drug delivery. Pharm Res 17:1354–1359

    Article  PubMed  CAS  Google Scholar 

  • Mitragotri S (2004) Breaking the skin barrier. Adv Drug Deliv Rev 56:555–556

    Article  PubMed  CAS  Google Scholar 

  • Mitragotri S (2013) Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers. Adv Drug Del Rev 65:100–103

    Article  CAS  Google Scholar 

  • Mitragotri S, Blankschtein D, Langer R (1995a) Ultrasound-mediated transdermal protein delivery. Science 269:850–853

    Article  PubMed  CAS  Google Scholar 

  • Mitragotri S, Blankschtein D, Langer R (1996) Transdermal drug delivery using low-frequency sonophoresis. Pharm Res 13:411–420

    Article  PubMed  CAS  Google Scholar 

  • Mitragotri S, Edwards DA, Blankschtein D, Langer (1995b) A mechanistic study of ultrasonically-enhanced transdermal drug delivery. J Pharm Sci 84:697–706

    Google Scholar 

  • Mitragotri S, Kost J (2004) Low-frequency sonophoresis a review. Adv Drug Del Rev 56:589–601

    Article  CAS  Google Scholar 

  • Miyata T, Uragami T, Nakamae K (2002) Biomolecule sensitive hydrogels. Adv Drug Deliv Rev 54:79–98

    Article  PubMed  CAS  Google Scholar 

  • Murthy SN, Zhao YL, Marlan K, Hui SW, Kazim AL, Sen A (2006) Lipid and electroosmosis enhanced transdermal delivery of insulin by electroporation. J Pharm Sci 95:2041–2050

    Article  PubMed  CAS  Google Scholar 

  • Naik A, Kalia YN, Guy RH (2000) Transdermal drug delivery: overcoming the skin’s barrier function. Pharm Sci Technol Today 3:318–326

    Article  PubMed  CAS  Google Scholar 

  • Nair V, Pillai O, Ramarao P, Panchagnula R (1999) Transdermal iontophoresis. Part I: basic principles and considerations methods find exp. Clin Pharmacol 21:139–151

    CAS  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electrical pulses in vesicular membranes. J Membr Biol 10:279–290

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Odia S, Vocks E, Rakoski J, Ring J (1996) Successful treatment of dyshidrotic hand eczema using tap water iontophoresis with pulsed direct current. Acta Derm Venereol (Stockh) 76:472–474

    CAS  Google Scholar 

  • Ogura M, Paliwal S, Mitragotri S (2008) Low-frequency sonophoresis: current status and future prospects. Adv Drug Del Rev 60:1218–1223

    Article  CAS  Google Scholar 

  • Oh SY, Leung L, Bommannan D, Guy RH, Potts RO (1993) Effect of current, ionic strength and temperature on the electrical properties of skin. J Control Rel 27:115–125

    Article  CAS  Google Scholar 

  • Oosawa F (1957) A simple theory of thermodynamic properties of polyelectrolyte solutions. J Polymer Sci 23:421–430

    Article  CAS  Google Scholar 

  • Osada Y, Gong J-P (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837

    Article  CAS  Google Scholar 

  • Panchagnula R, Pillai I, Nair VB, Ramarao P (2000) Transdermal iontophoresis revisited. Curr Opin Chem Biol 4:468–473

    Article  PubMed  CAS  Google Scholar 

  • Park D, Park H, Seo J, Lee S (2014) Sonophoresis in transdermal drug deliverys Ultrasonics 54:56–65

    PubMed  CAS  Google Scholar 

  • Park EJ, Dodds J, Smith NB (2008) Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection. Int J Nanomed 3:335–341

    CAS  Google Scholar 

  • Park EJ, Werner J, Smith NB (2007) Ultrasound mediated transdermal insulin delivery in pigs using a lightweight transducer. Pharm Res 24:1396–1401

    Article  PubMed  CAS  Google Scholar 

  • Park H, Park K, Shalaby WSW (2011) Biodegradable hydrogels for drug delivery. CRC Press

    Google Scholar 

  • Park K, Shalaby WSW, Park H (1993) Biodegradable hydrogels for controlled drug delivery. Technomic Publishing Co., Inc., Lancaster, PA Chapter 1

    Google Scholar 

  • Patel MP, Churchmana ST, Cruchley AT, Bradena M, Williams DM (2013) Delivery of macromolecules across oral mucosa from polymeric hydrogels is enhanced by electrophoresis (iontophoresis). Dental Mat 29:e299–e307

    Article  CAS  Google Scholar 

  • Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL (2010) Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 1:109–131

    Article  PubMed  CAS  Google Scholar 

  • Peppas NA, Keys KB, Torres-Lugo M, Lowman AM (1999) Poly(ethylene glycol)-containing hydrogels in drug delivery. J Control Rel 62:81–87

    Article  CAS  Google Scholar 

  • Peppas NA, Ritger PL (1987a) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Rel 5:23–36

    Article  Google Scholar 

  • Peppas NA, Ritger PL (1987b) A simple equation for description of solute release II. Fickian and anamolous release from swellable device. J Control Rel 5:37–42

    Article  Google Scholar 

  • Petchsangsai M, Rojanarata T, Opanasopit P, Ngawhirunpat T (2014) The combination of microneedles with electroporation and sonophoresis to enhance hydrophilic macromolecule skin penetration. Biol Pharm Bull 37:1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Pikal MJ (1992) The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev 9:137–176

    Article  Google Scholar 

  • Pikal MJ, Shah S (1991) Study of the mechanisms of flux enhancement through hairless mouse skin by pulsed DC iontophoresis. Pharm Res 8:365–369

    Article  PubMed  CAS  Google Scholar 

  • Pillai O, Panchagnula R (2003) Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. J Control Rel 89:127–140

    Article  CAS  Google Scholar 

  • Pliquett U, Weaver JC (1996) Transport of a charged molecule across the human epidermis due to electroporation. J Control Rel 38:1–10

    Article  CAS  Google Scholar 

  • Polat BE, Hart D, Langer R, Blankschtein D (2011) Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Rel 152:330–348

    Google Scholar 

  • Prasad R, Anand S, Khar RK, Dinda AK, Koul V (2009) Studies on in vitro and in vivo transdermal flux enhancement of methotrexate by a combinational approach in comparison to oral delivery. Drug Dev Ind Pharm 11:1281–1292

    Article  Google Scholar 

  • Prasad R, Koul V (2012) Transdermal delivery of methotrexate: past, present and future prospects. Ther Del 3:315–325

    Article  CAS  Google Scholar 

  • Prasad R, Koul V, Anand S, Khar RK (2007) Effect of DC/mDC iontophoresis and terpenes on transdermal permeation of methotrexate: in vitro study. Int J Pharm 333:70–78

    Article  PubMed  CAS  Google Scholar 

  • Prausnitz MR (1998) Electroporation. In: Berner B, Dinh SM (eds) Electronically controlled drug delivery. CRC Press, Boca Raton, FL, pp 185–214

    Google Scholar 

  • Prausnitz MR (1999) A practical assessment of transdermal drug delivery by skin electroporation. Adv Drug Deliv Rev 35:61–76

    Article  PubMed  CAS  Google Scholar 

  • Prausnitz MR, Bose VG, Langer R, Weaver JC (1993) Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc Natl Acad Sci USA 90:10504–10508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotech 26:1261–1268

    Article  CAS  Google Scholar 

  • Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3:115–124

    Article  PubMed  CAS  Google Scholar 

  • Prausnitz MR (1997) Reversible skin permeabilization for transdermal delivery of macromolecules. Crit Rev Ther Drug Carrier Syst 14:455–483

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Park K (2001) Environment -sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  PubMed  CAS  Google Scholar 

  • Quinn HL, Hughes CM, Donnelly RF (2016) Novel methods of drug administration for the treatment and care of older patients. Int J Pharm. In Press

    Google Scholar 

  • Raiman J, Koljonen M, Huikko K, Kostiainen R, Hirvonen J (2004) Delivery and stability of LHRH and Nafarelin in human skin: the effect of constant/pulsed iontophoresis. Eur J Pharm Sci 21:371–377

    Article  PubMed  CAS  Google Scholar 

  • Rastogi R, Anand S, Koul V (2010a) Electroporation of polymeric nanoparticles: an alternative technique for transdermal delivery of insulin. Drug Dev Ind Pharm 36:1303–1311

    Article  PubMed  CAS  Google Scholar 

  • Rastogi R, Anand S, Dinda AK, Koul V (2010b) Investigation on the synergistic effect of a combination of chemical enhancers and modulated iontophoresis for transdermal delivery of insulin. Drug Dev Ind Pharm 36:993–1004

    Article  PubMed  CAS  Google Scholar 

  • Rehman K, Zulfakar MH (2014) Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm 40:433–440

    Article  PubMed  CAS  Google Scholar 

  • Rosendal T (1943) Studies on the conducting properties of the human skin to direct current. Acta Physiol Scand 5:130–151

    Article  Google Scholar 

  • Sale AJH, Hamilton WA (1967) Effects of electric fields on microorganisms killing of bacteria and yeasts. Biochim Biophys Acta 118:781–788

    Article  Google Scholar 

  • Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv Colloid Interface Sci 168:247–262

    Article  PubMed  CAS  Google Scholar 

  • Sardesai NY, Weiner DB (2011) Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 23:421–429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saroha K, Singh S, Aggarwal A, Nanda S (2013) Transdermal gels—an alternative vehicle for drug delivery. Int J Pharm Chem Biol Sci IJPCBS 3:495–503

    CAS  Google Scholar 

  • Scheuplein RJ (1965) Mechanism of percutaneous absorption: I. Routes of penetration and the influence of solubility. J Invest Dermatol 29:131–149

    Google Scholar 

  • Scheuplein RJ (1967) Mechanism of percutaneous absorption: II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol 48:79–88

    Article  PubMed  CAS  Google Scholar 

  • Schreier H, Bouwstra J (1994) Liposomes and niosomes as topical drug carriers-dermal and transdermal drug-delivery. J Control Rel 30:1–15

    Article  CAS  Google Scholar 

  • Schuetz YB, Naik A, Guy RH, Kalia YN (2005) Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert Opin Drug Deliv 2:533–548

    Article  PubMed  CAS  Google Scholar 

  • Scott ER, Laplaza AI, White HS, Phipps JB (1993) Transport of ionic species in skin: contribution of pores to the overall skin conductance. Pharm Res 10:1699–1709

    Article  PubMed  CAS  Google Scholar 

  • Sen A, Daly MS, Hui SW (2002) Transdermal insulin delivery using lipid enhanced electroporation. Biochim Biophys Acta 1564:5–8

    Article  PubMed  CAS  Google Scholar 

  • Shipton EA (2012) Advances in delivery systems and routes for local anaesthetics. Trends Anaesth Critical Care 2:228–233

    Article  Google Scholar 

  • Sieg A, Guy RH, Delgado-Charro MB (2004) Electroosmosis in transdermal iontophoresis: implications for noninvasive and calibration-free glucose monitoring. Biophys J 87:3344–3350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sims SM, Higuchi WI, Srinivasan V (1991) Skin alteration and convective solvent flow effects during iontophoresis: I. Neutral solute transport across human skin. Int J Pharm 69:109–121

    Article  CAS  Google Scholar 

  • Sirsi SR, Borden MA (2014) State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Del Rev 72:3–14

    Article  CAS  Google Scholar 

  • Smith NB, Lee S, Maione E, Roy RB, McElligott S, Shung KK (2003a) Ultrasound-mediated transdermal transport of insulin in vitro through human skin using novel transducer designs. Ultrasound Med Biol 29:311–317

    Article  PubMed  Google Scholar 

  • Smith NB, Lee S, Shung KK (2003b) Ultrasound-mediated transdermal in vivo transport of insulin with low-profile cymbal arrays. Ultrasound Med Biol 29:1205–1210

    Article  PubMed  Google Scholar 

  • Spierings EL, Brevard JA, Katz NP (2008) Two-minute skin anesthesia through ultrasound pretreatment and iontophoretic delivery of a topical anesthetic: a feasibility study. Pain Med 9:55–59

    Article  PubMed  Google Scholar 

  • Swartzendruber DC, Wertz PW, Madison KC (1987) Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol 88:709–713

    Article  PubMed  CAS  Google Scholar 

  • Tachibana K, Tachibana S (1991) Transdermal delivery of insulin by ultrasonic vibration. J Pharm Pharmacol 43:270–271

    Article  PubMed  CAS  Google Scholar 

  • Tachibana K, Tachibana S (1993) Use of ultrasound to enhance the local anesthetic effect of topically applied aqueous lidocaine. Anestheiology 78:1091–1096

    Article  CAS  Google Scholar 

  • Tagami H, Ohi M, Iwatsuki K, Kanamaru Y, Yamada M, Ichijo B (1980) Evaluation of the skin surface hydration in vivo by electrical measurement. J Invest Dermatol 75:500–507

    Article  PubMed  CAS  Google Scholar 

  • Tezel A, Sens A, Mitragotri S (2002) Incorporation of lipophilic pathways into the porous pathway model for describing skin permeabilization during low frequency sonophoresis. J Control Rel 83:183–188

    Article  CAS  Google Scholar 

  • Tezel A, Sens A, Tuchscherer J, Mitragotri S (2001) Frequency dependence of sonophoresis. Pharm Res 18:1694–1700

    Article  PubMed  CAS  Google Scholar 

  • Tuncel A, Demiroz PS, Piskin E (2002) A novel approach for albumin determination in aqueous media by using temperature and pH sensitive N-isopropyl acrylamide-co-N-[3-(dimethylamino)-propyl] methacrylamide random co-polymers. J Appl Polym Sci 84:2060–2070

    Article  CAS  Google Scholar 

  • Uma DS, Ganesan M, Mohanta GP, Manavalan R (2002) Design and evaluation of tetracycline hydrochloride gels. Indian Drugs 39:552–554

    CAS  Google Scholar 

  • Valenta C, Auner BG (2004) The use of polymers for dermal andtransdermal delivery. Eur J Pharms Biopharm 58:279–289

    Article  CAS  Google Scholar 

  • Wang YM, Allen LV, Li LC (2000) Effect of sodium dodecyl sulphate on iontophoresis of hydrocortisone across hairless mouse skin. Pharm Dev T 5:533–542

    Article  CAS  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 1185:117–118

    Article  Google Scholar 

  • Williams AC (2003) Structure and function of human skin. In: Transdermal and topical drug delivery-from theory to clinical practice. Pharmaceutical press, London, pp 1–25

    Google Scholar 

  • Wong TW (2014) Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. J Control Rel 193:257–269

    Article  CAS  Google Scholar 

  • Wong TW, Chen TY, Huang CC, Tsai JC, Hui SW (2011) Painless skin electroporation as a novel way for insulin delivery. Diabetes Technol Ther 13:929–935

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Yamamoto Y (1976) Electrical properties of the epidermal stratum corneum. Med Biol Eng Comput 14:151–158

    Article  CAS  Google Scholar 

  • Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavci D (2014) Electroporation based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320

    Article  PubMed  CAS  Google Scholar 

  • Zhang I, Shung KK, Edwards DA (1996) Hydrogels with enhanced mass transfer for transdermal drug delivery. J Pharm Sci 85:1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Zorec B, Becker S, Reberšek M, Miklavci D, Pavšelj N (2013) Skin electroporation for transdermal drug delivery: the influence of the order of different square wave electric pulses. Int J Pharm 457:214–223

    Article  PubMed  CAS  Google Scholar 

  • Zorec B, Jelenc J, Miklavčič D, Pavšelj N (2015) Ultrasound and electric pulses for transdermal drug delivery enhancement: ex vivo assessment of methods with in vivo oriented experimental protocols. Int J Pharm 490:65–73

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Koul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, R., Koul, V. (2018). Polymeric Gels: Vehicles for Enhanced Drug Delivery Across Skin. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6086-1_9

Download citation

Publish with us

Policies and ethics