Skip to main content

Application of Gadolinium-Doped Zinc Oxide Quantum Dots for Magnetic Resonance and Fluorescence Imaging

  • Chapter
  • First Online:
Multifunctional Nanoprobes

Part of the book series: Springer Theses ((Springer Theses))

  • 400 Accesses

Abstract

Although the fluorescence imaging (FI) technique has high sensitivity, its penetration capability is very limited. In contrast, magnetic resonance imaging (MRI) has deep tissue penetration but low sensitivity. Thus, more available and accurate diagnostic information can be anticipated after combination of FI with MRI. However, currently existent methods for the fabrication of MRI-FI nanoprobes are complex, and the resultant MRI-FI nanoprobes have many disadvantages such as high toxicity, large particle size, or low relaxivity and quantum yield. To address these issues, we described in this chapter a straightforward and versatile method to develop MRI-FI dual modality nanoprobes by doping Gd3+ ions in low toxic ZnO quantum dots (QDs). The resultant Gd-doped ZnO QDs are ultrasmall in size and have enhanced fluorescence resulting from the Gd doping. In vitro experiments confirm that Gd-doped ZnO QDs can successfully label the HeLa cells in short time and present no evidence of toxicity or adverse effects on cell growth. Besides, they exert a strong positive contrast effect with a large longitudinal relaxivity much higher than that of Gd-based clinical MRI contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsai CP, Hung Y, Chou YH et al (2008) High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe. Small 4:186–191

    Article  Google Scholar 

  2. Setua S, Menon D, Asok A et al (2010) Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials 31:714–729

    Article  Google Scholar 

  3. Mulder WJM, Strijkers GJ, Tilborg GAF van et al (2006) Lipidbased nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164

    Article  Google Scholar 

  4. Lauffer RB et al (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87:901–927

    Article  Google Scholar 

  5. Reid T (2009) Magnetic resonance imaging: Forcing the nanoscale. Nat Nanotechnol. doi:10.1038/nnano.2009.14

    Google Scholar 

  6. Caravan P, Ellison JJ, McMurry TJ et al (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  Google Scholar 

  7. Anderson EA, Isaacman S, Peabody DS et al (2006) Viral nanoparticles donning a paramagnetic coat: Conjugation of MRI contrast agents to the MS2 capsid. Nano Lett 6:1160–1164

    Article  Google Scholar 

  8. Kim J, Kim HS, Lee N et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47:8438–8441

    Article  Google Scholar 

  9. Yi DK, Selvan ST, Lee SS et al (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127:4990–4991

    Article  Google Scholar 

  10. Hu KW, Hsu KC, Yeh CS (2010) pH-Dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging. Biomaterials 31:6843–6848

    Article  Google Scholar 

  11. Schooneveld MM van, Vucic E, Koole R et al (2008) Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: A multimodality investigation. Nano Lett 8:2517–2525

    Article  Google Scholar 

  12. Selvan ST, Patra PK, Ang CY et al (2007) Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed 46:2448–2452

    Article  Google Scholar 

  13. Lee JE, Lee N, Kim H et al (2010) Uniform mesoporous dyedoped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc 132:552–557

    Article  Google Scholar 

  14. Santra S, Bagwe RP, Dutta D et al (2005) Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications. Adv Mater 17:2165–2169

    Article  Google Scholar 

  15. Werner EJ, Datta A, Jocher CJ et al (2008) High-relaxivity MRI contrast agents: Where coordination chemistry meets medical imaging. Angew Chem Int Ed 47:8568–8580

    Article  Google Scholar 

  16. Bulte JWM, Kraitch-man DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  Google Scholar 

  17. Santra S, Yang H, Holloway PH et al (2005) Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: A multifunctional probe for bioimaging. J Am Chem Soc 127:1656–1657

    Article  Google Scholar 

  18. Wang S, Jarrett BR, Kauzlarich SM et al (2007) Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J Am Chem Soc 129:3848–3856

    Article  Google Scholar 

  19. Li IF, Yeh CS (2010) Synthesis of Gd doped CdSe nanoparticles for potential optical and MR imaging applications. J Mater Chem 20:2079–2081

    Article  Google Scholar 

  20. Ju Q, Tu D, Liu Y et al (2012) Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc 134:1323–1330

    Article  Google Scholar 

  21. Petoral RM Jr, Soderlind F, Klasson A et al (2009) Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: A bifunctional material with combined fluorescent labeling and MRI contrast agent properties. J Phys Chem C 113:6913–6920

    Article  Google Scholar 

  22. Kirchner C, Liedl T, Kudera S (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    Article  Google Scholar 

  23. Hardman R (2006) Toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  24. Jana NR, Yu HH, Ali EM et al (2007) Controlled photostability of luminescent nanocrystalline ZnO solution for selective detection of aldehydes. Chem Commun 14:1406–1408

    Article  Google Scholar 

  25. Vanheusden K, Warren WL, Seager CH et al (1996) Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys 79:7983–7990

    Article  Google Scholar 

  26. Dijken AV, Meulenkamp EA, Vanmaekelbergh D et al (2000) Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J Lumin 90:123–128

    Article  Google Scholar 

  27. Dijken AV, Meulenkamp EA, Vanmaekelbergh D et al (2000) The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J Phys Chem B 104:1715–1723

    Article  Google Scholar 

  28. Xiong HM, Shchukin DG, Mohwald H et al (2009) Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium(II). Angew Chem Int Ed 48:2727–2731

    Article  Google Scholar 

  29. Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc 113:2826–2833

    Article  Google Scholar 

  30. Zhang L, Yin L, Wang C et al (2010) Origin of visible photoluminescence of ZnO quantum dots: Defect-dependent and size-dependent. J Phys Chem C 114:9651–9658

    Article  Google Scholar 

  31. Monticone S, Tufeu R, Kanaev AV (1998) Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. J Phys Chem B 102:2854–2862

    Article  Google Scholar 

  32. Zhang LW, Yu WW, Colvin VL et al (2008) Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228:200–211

    Article  Google Scholar 

  33. Bhang SH, Won N, Lee TJ et al (2009) Hyaluronic acid quantumdot conjugates for in vivo lymphatic vessel imaging. ACS Nano 3:1389–3198

    Article  Google Scholar 

  34. Wu C, Shi L, Li Q et al (2010) Probing the dynamic effect of Cys-CdTe quantum dots toward cancer cells in vitro. Chem Res Toxicol 23:82–88

    Article  Google Scholar 

  35. Stern ST, Zolnik BS, McLeland CB et al (2008) Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials? Toxicol Sci 106:140–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanlan Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y. (2018). Application of Gadolinium-Doped Zinc Oxide Quantum Dots for Magnetic Resonance and Fluorescence Imaging. In: Multifunctional Nanoprobes. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6168-4_3

Download citation

Publish with us

Policies and ethics