Skip to main content

Diversity of Sulfur-Oxidizing and Sulfur-Reducing Microbes in Diverse Ecosystems

  • Chapter
  • First Online:
Advances in Soil Microbiology: Recent Trends and Future Prospects

Abstract

Sulfur (S) is one of the most important elements, of which the organosulfur compounds and/or metal sulfides are considered essential for life. Microbial sulfur oxidation and reduction are the most active and ancient metabolic processes in S cycle that operate in diverse ecosystems. This process is carried out by sulfur-oxidizing (SOB) and sulfur-reducing bacteria (SRB) in all ecosystems and considered as key phenomenon in sulfur biogeochemical cycling. Usually, on the basis of nutrition, SOB and SRB are categorized as lithoautotrophs. SOB oxidize the reduced sulfur compounds such as hydrogen sulfide (H2S), elemental sulfur (S0), sulfite (SO3 −2), thiosulfate (S2O3 2−), and various polythionates (SnO6 2− or -SnO6-) into sulfate (SO4 −2). On the contrary, SO4 −2 can serve as an electron acceptor of SRB under anaerobic condition, and they reduce the SO4 −2 and other oxidized sulfur compounds (S2O3 2−, SO3 −2, S0) into H2S. In natural system, SRB reduce the SO4 −2 in two different reduction processes, viz, dissimilatory and assimilatory reactions. In dissimilatory reaction, SRB utilize three kinds of enzymes (ATP sulfurylase, APS reductase, and sulfite reductase) to reduce the S substrate, whereas the sulfate is assimilated or incorporated into organic compounds under assimilatory process through S substrate reduction. In recent years, molecular methods have emerged as essential tools for a better understanding of the microbial role in S transformation under various habitats. Keeping the importance of microbial-mediated S oxidation and reduction in biogeochemical cycle of S, the present chapter describes the role of key functional microbial genes in S transformation such as genes involved in S oxidation (sox, aps, asf, and sor) and reduction (dsr) and also discusses in detail about the abundance, diversity, and impact of these in diverse ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Lal B (2009) Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. FEMS Microbiol Ecol 69:301–312

    Article  CAS  PubMed  Google Scholar 

  • Alewell C, Manderscheid B, Meesenburg H, Bittersohl J (2000) Is acidification still an ecological threat. Nature 407:856–858

    Article  CAS  PubMed  Google Scholar 

  • Anandham JJ (1991) Sulfur-oxidizing bacteria as plant growth promoting rhizobacteria for canola. Can J Microbiol 7:521–529

    Google Scholar 

  • Anandham R, Gandhi PI, Kwon SW, Sa TM, Kim YK, Jee HJ (2009) Mixotrophic metabolism in Burkholderia kururiensis subsp. thiooxydans subsp. nov., a facultative chemolithoautotrophic thiosulfate oxidizing bacterium isolated from rhizosphere soil and proposal for classification of the type strain of Burkholderia kururiensis as Burkholderia kururiensis subsp. kururiensis subsp. nov. Arch Microbiol 191:885–894

    Article  CAS  PubMed  Google Scholar 

  • Appia-Ayme C, Little PJ, Matsumoto Y, Leech AP, Berks BC (2001) Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 183:6107–6118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badhai J, Ghosh TS, Das SK (2014) Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India. Front Microbiol 6:1166

    Google Scholar 

  • Bamford VA, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC, Hemmings AM (2002) Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J 21:5599–5610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardischewsky F, Quentmeier A, Rother D, Hellwig P, Kostka S, Friedrich CG (2005) Sulfur dehydrogenase of Paracoccus pantotrophus: the heme-2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity. Biochemistry 44:7024–7034

    Google Scholar 

  • Bettany JR, Stewart JWB, Halstead EH (1973) Sulfur fractions and carbon, nitrogen and sulfur relationships in grassland, forest and associated transitional soils. Soil Sci Soc Am Proc 37:915–918

    Article  CAS  Google Scholar 

  • Blodau C, Mayer B, Peiffer S, Moore TR (2007) Support for an anaerobic sulfur cycle in two Canadian peatland soils. J Geophys Res 112:G02004

    Article  CAS  Google Scholar 

  • Brock TD (1978) Thermophilic micro-organisms and life at high temperatures. Springer, New York, pp 1–465

    Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189–221

    Article  CAS  PubMed  Google Scholar 

  • Brune DC, Blankenship RE, Madigan MT, Bauer CE (1995) Sulfur compounds as photosynthetic electron donors Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 847–870

    Google Scholar 

  • Brunner B, JY Y, Mielke RE, MacAskill JA, Madzunkov S, McGenity TJ, Coleman M (2008) Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy. Earth Planet Sci Lett 270:63–72

    Article  CAS  Google Scholar 

  • Burke ME, Gorham E, Pratt DC (1974) Distribution of purple photosynthetic bacteria in wetland and woodland habitats of central and northern Minnesota. J Bacteriol 117:826–833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman SJ (1990) Thiobacillus populations in some agricultural soils. Soil Biol Biochem 22:479–482

    Article  Google Scholar 

  • Dahl C, Friedrich RW (2008) Inorganic sulfur compounds as electron donors in purple sulfur bacteria, vol 168. Institut für Mikrobiologie Biotechnologie, Bonn, p D-53115

    Google Scholar 

  • Dahl C, Trüper HG (1994) Enzymes of dissimilatory sulfide oxidation in phototrophic bacteria. Methods Enzymol 243:400–421

    Article  CAS  Google Scholar 

  • Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O, Brune DC (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187:1392–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dent DL (1986) Acid sulphate soils: a baseline for research and development. ILRI Publications, Wageningen, p 39

    Google Scholar 

  • Deppe M, McKnight DM, Blodau C (2010) Effects of short-term drying and irrigation on electron flow in mesocosms of a northern bog and an alpine fen. Environ Sci Technol 44:80–86

    Article  CAS  PubMed  Google Scholar 

  • de Zwart JMM, Nelisse PN, Kuenen JG (1996) Isolation and characterization of Methylophaga sulfidoVorans, sp. nov.: an obligately methylotrophic, aerobic, dimethyl sulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Ecol 20:261–270

    Article  Google Scholar 

  • Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dise NB (2009) Peatland response to global change. Science 326:810–811

    Article  CAS  PubMed  Google Scholar 

  • Fischer U (1989) Enzymatic steps in dissimilatory sulfur metabolism by whole cells of anoxyphotobacteria. In: Saltzman E, Cooper W (eds) Biogenic Sulfur in the Environment. American Chemical Society, Washington, DC, pp 262–279

    Chapter  Google Scholar 

  • Freney JR, Jacq VA, Baldensperger J (1982) Microbiology of tropical soils and plant productivity. Martinus Nijhoff Publishers, The Hague, pp 271–317

    Book  Google Scholar 

  • Friedrich CG, Mitrenga G (1981) Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol Lett 10:209–212

    Article  CAS  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259

    Article  CAS  PubMed  Google Scholar 

  • Frigaard NU, Bryant DA (2008) Genomic insights into the sulfur metabolism of phototrophic green sulfur bacteria. Springer, Dordrecht, pp 337–355

    Google Scholar 

  • Gauci V et al (2004) Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proc Natl Acad Sci 101:12583–12587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentile R, Vanlauwe B, Chivenge P, Six J (2011) Trade-offs between the short-and long-term effects of residue quality on soil C and N dynamics. Plant Soil 338:159–169

    Article  CAS  Google Scholar 

  • Germida JJ, Wainwright M, Gupta VV (1992) Biochemistry of sulfur cycling in soil. Soil Biochem 7:1–53

    Google Scholar 

  • Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043

    Article  CAS  PubMed  Google Scholar 

  • Grayston SJ, Wainwright M (1988) Sulphur oxidation by soil fungi including some species of mycorrhizae and wood-rotting basidiomycetes. FEMS Microbiol Ecol 4:1–8

    Article  Google Scholar 

  • Grabarczyk DB, Chappell PE, Johnson S, Stelzl LS, Lea SM, Berks BC (2015) Structural basis for specificity and promiscuity in a carrier protein/enzyme system from the sulfur cycle. Proc Natl Acad Sci 112:7166–7175

    Google Scholar 

  • Grayston SJ, Nevell W, Wainwright M (1986) Sulphur oxidation by fungi. Trans Br Mycol Soc 87:193–198

    Article  CAS  Google Scholar 

  • Harrison AP (1978) Microbial succession and mineral leaching in an artificial coal spoil. Appl Environ Microbiol 36:861–869

    CAS  PubMed  PubMed Central  Google Scholar 

  • He JZ, Liu XZ, Zheng Y, Shen JP, Zhang LM (2010) Dynamics of sulfate reduction and sulfate-reducing prokaryotes in anaerobic paddy soil amended with rice straw. Biol Fertil Soils 46:283–291

    Article  CAS  Google Scholar 

  • Hensen D, Sperling D, Trüper HG, Brune DC, Dahl C (2006) Thiosulfate oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. Mol Microbiol 62:794–810

    Google Scholar 

  • Hipp WM, Pott AS, Thum-Schmitz N, Faath I, Dahl C, Trüper HG (1997) Towards the phylogeny of APS reductases and sirohaem sulphite reductases in sulfate- reducing and sulfur-oxidizing prokaryotes. Microbiology 143:2891–2902

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Hiraishi A (2005) Aerobic bacteria containing bacteriochlorophyll and belonging to the Alphaproteobacteria. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2. Springer, New York, p 135

    Google Scholar 

  • Janosch C, Remonsellez F, Sand W, Vera M (2015) Sulfur Oxygenase Reductase (Sor) in the moderately Thermoacidophilic leaching bacteria: studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus. In: Amils R, Toril EG (eds) Microorganisms 3:707–724

    Google Scholar 

  • Jensen LS, Salo T, Palmason F, Breland TA, Henriksen TM, Stenberg B, Pedersen A, Lundström C, Esala M (2005) Influence of biochemical quality on C and N mineralisation from a broad variety of plant materials in soil. Plant Soil 273:307–326

    Article  CAS  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Jørgensen BB, Nelson DC (2004) Sulfide oxidation in marine sediments: geochemistry meets microbiology. Geol Soc Am Spec Pap 379:63–81

    Google Scholar 

  • Joshi MM, Hollis JP (1976) Rapid enrichment of Beggiatoa from soil. J Appl Bacteriol 40:223–224

    Article  CAS  PubMed  Google Scholar 

  • Jyoti V, Narayan KD, Das SK (2010) Gulbenkiania indica sp. nov, isolated from a sulfur spring. Int J Syst Evol Microbiol 60:1052–1055

    Google Scholar 

  • Kappler U, Dahl C (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett 203:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP, Shergill JK, WP L, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 71:95–107

    Article  CAS  PubMed  Google Scholar 

  • Kertesz MA, Mirleau P (2004) The role of soil microbes in plant sulfur nutrition. J Exp Bot 55:1939–1945

    Article  CAS  PubMed  Google Scholar 

  • Khanna S, Nicholas DJD (1982) Utilization of tetrathionate and 35S-labelled thiosulphate by washed cells of Chlorobium vibrioforme of sp Thiosulfatophilum. J Gen Microbiol 128:1027–1034

    CAS  Google Scholar 

  • Kjeldsen KU et al (2007) Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60:287–298

    Article  CAS  PubMed  Google Scholar 

  • Kleinmann RL, Crerar DA (1979) Thiobacillus ferrooxidans and the formation of acidity in simulated coal mine environments. Geomicrobiol J 1:373–388

    Article  CAS  Google Scholar 

  • Klemm O, Lange H (1999) Trends of air pollution in the Fichtelgebirge Mountains, Bavaria. Environ Sci Pollut Res Int 6:193–199

    Article  CAS  PubMed  Google Scholar 

  • Klotz MG, Bryant DA, Hanson TE (2011) The microbial sulfur cycle. Front Microbiol 2:1–2

    Article  Google Scholar 

  • Knights JS, Zhao FJ, McGrath SP, Magan N (2001) Long-term effects of land use and fertiliser treatments on sulphur transformations in soils from the Broadbalk experiment. Soil Biol Biochem 33:1797–1804

    Article  CAS  Google Scholar 

  • Krishnani KK, Kathiravan V, Natarajan M, Kailasam M, Pillai SM (2010) Diversity of sulfur-oxidizing bacteria in greenwater system of coastal aquaculture. Appl Biochem Biotechnol 162:1225–1237

    Article  CAS  PubMed  Google Scholar 

  • Kuenen JG, Tuovinen DH (1981) The genera Thiobacillus and Thiomicrospira. In: Starr MP et al (eds) The prokaryotes, a handbook on habitats, isolation and identification of bacteria. Springer, New York, pp 1023–1036

    Google Scholar 

  • Kumar U, Dangar TK (2014) Thermo-tolerant plant-growth promoting fungi (PGPF) from hot springs of Odisha. CRRI Newslett 35:8–9. http://www.crri.nic.in/CRRI_newsletter/crnl_aprjune_2014_web.pdf

  • Kumar U, Berliner J, Adak T, Rath PC, Dey A, Pokhare SS, Jambhulkar NN, Panneerselvam P, Kumar A, Mohapatra SD (2017) Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system. Ecotoxicol Environ Saf 135:225–235

    Article  CAS  PubMed  Google Scholar 

  • Langenhoff R (1986) Distribution, mapping, classification and use of acid sulphate soils in the tropics, a literature study. Soil Survey Institute, Wageningen, p 133

    Google Scholar 

  • Larsen H (1952) On the culture and general physiology of the green sulfur bacteria. J Bacteriol 64:187–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen Ø, Lien T, Birkeland NK (2001) A novel organization of the dissimilatory sulfite reductase operon of Thermodesulforhabdus norvegica verified by RT-PCR. FEMS Microbiol Lett 203:81–85

    Google Scholar 

  • Lawrence JR, Gupta VVSR, Germida JJ (1988) Impact of elemental sulfur fertilization on agricultural soils II Effects on sulfur oxidizing populations and oxidation rates. Can J Soil Sci 68:475–483

    Article  CAS  Google Scholar 

  • Lübbe YJ, Youn H-S, Timkovich R, Dahl C (2006) Siro (haem) amide in Allochromatium vinosum and relevance of DsrL and DsrN, a homolog of cobyrinic acid a, c diamide synthase for sulfur oxidation. FEMS Microbiol Lett 261:194–202

    Article  PubMed  CAS  Google Scholar 

  • Lucheta AR, Lambais MR (2012) Sulfur in agriculture. Revista Brasileira de Ciência do Solo 36:1369–1379

    Article  CAS  Google Scholar 

  • Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K, Galdenzi S, Mariani S (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72:5596–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahala SC, Singh P, Das M, Acharya S (2013) Genesis of thermal springs of Odisha, India. Int J Earth Sci Eng 5:1572–1577

    Google Scholar 

  • Mander GJ, Pierik AJ, Huber H, Hedderich R (2004) Two distinct heterodisulfide reductase-like enzymes in the sulfate-reducing archaeon Archaeoglobus profundus. Eur J Biochem 271:1106–1116

    Article  CAS  PubMed  Google Scholar 

  • Mathew EK, Panda RK, Nair M (2001) Influence of subsurface drainage on crop production and soil quality in a low-lying acid sulphate soil. Agric Water Manag 47:191–209

    Article  Google Scholar 

  • Mattiello EM, da Silva RC, Degryse F, Baird R, Gupta VV, McLaughlin ML (2017) Sulfur and zinc availability from co-granulated Zn-enriched elemental sulfur fertilizers. J Agric Food Chem 65:1108–1115

    Article  CAS  PubMed  Google Scholar 

  • McLaren RG, Keer JI, Swift RS (1985) Sulfur transformations in soils using S-35 labeling. Soil Biol Biochem 17:73–79

    Article  CAS  Google Scholar 

  • Meyer B, Kuever J (2007) Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase from sulfate reducing prokaryotes – origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology 153:2026–2044

    Google Scholar 

  • Mouraret M, Baldensperger J (1977) Use of membrane filters for the enumeration of autotrophic Thiobacilli. Microb Ecol 3:345–358

    Article  CAS  PubMed  Google Scholar 

  • Narayan KD, Sabat SC, Das SK (2016) Mechanism of electron transport during thiosulfate oxidation in an obligately mixotrophic bacterium Thiomonas bhubaneswarensis strain S10 (DSM 18181T). Appl Microbiol Biotechnol 10:1–4

    Google Scholar 

  • Nelson DC, Fisher CR (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps, in the microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, pp 125–167

    Google Scholar 

  • Niknahad-Gharmakher H, Piutti S, Machet JM, Benizri E, Recous S (2012) Mineralization-immobilization of sulphur in a soil during decomposition of plant residues of varied chemical composition and S content. Plant Soil 360:391–404

    Article  CAS  Google Scholar 

  • Odintsova EV, Jannasch HW, Mamone JA, Langworthy TA (1996) Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium. Int J Syst Evol Microbiol 46:422–428

    CAS  Google Scholar 

  • Paul S, Kusel K, Alewell C (2006) Reduction processes in forest wetlands: tracking down heterogeneity of source/sink functions with a combination of methods. Soil Biol Biochem 38:1028–1039

    Article  CAS  Google Scholar 

  • Pelletier N, Leroy G, Guiral M, Giudici-Orticoni MT, Aubert C (2008) First characterisation of the active oligomer form of sulfur oxygenase reductase from the bacterium Aquifex aeolicus. Extremophiles 12:205–215

    Article  CAS  PubMed  Google Scholar 

  • Perreault NN, Andersen DT, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high Arctic. Appl Environ Microbiol 73:1532–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pester M, Bittner N, Deevong P, Wagner M, Loy A (2010) A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME J 4:1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petri R, Podgorsek L, Imhoff JF (2001) Phylogeny and distribution of the soxB gene among thiosulfate oxidizing bacteria. FEMS Microbiol Lett 197:171–178

    Article  CAS  PubMed  Google Scholar 

  • Plumb JJ, Haddad CM, Gibson JA, Franzmann PD (2007) Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 57:1418–1423

    Article  PubMed  Google Scholar 

  • Rawlings DE (2001) The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotrophic, iron- or sulfur-oxidizing bacteria. Hydrometallurgy 59:187–201

    Article  CAS  Google Scholar 

  • Reddy DV, Nagbhusanam P, Ramesh G (2013) Turnover time of rural and Rajvadi hot spring waters, Maharastra, India. Curr Sci 104:1419–1424

    CAS  Google Scholar 

  • Reiche M, Hädrich A, Lischeid G, Küsel K (2009) Impact of manipulated drought and heavy rainfall events on peat mineralization processes and source-sink functions of an acidic fen. J Geophys Res 114:G02021

    Article  CAS  Google Scholar 

  • Roberts TL, Bettany JR (1985) The influence of topography on the nature and distribution of soil sulfur across a narrow environmental gradient. Can J Soil Sci 65:419–434

    Article  CAS  Google Scholar 

  • Sahoo K, Dhal NK (2009) Dhal Potential microbial diversity in mangrove ecosystems: a review. Indian J Mar Sci 38:249–256

    CAS  Google Scholar 

  • Schauder R, Kröger A (1993) Bacterial sulphur respiration. Arch Microbiol 159:491–497

    Article  CAS  Google Scholar 

  • Schedel M, Vanselow M, Truper HG (1979) Siroheme sulfite reductase from Chromatium vinosum purification and investigation of some of its molecular and catalytic properties. Arch Microbiol 121:29–36

    Article  CAS  Google Scholar 

  • Schmalenberger A, Hodge S, Hawkesford MJ, Kertesz MA (2009) Sulfonate desulfurization in Rhodococcus from wheat rhizosphere communities. FEMS Microbiol Ecol 67:140–150

    Article  CAS  PubMed  Google Scholar 

  • Skiba U, Wainwright M (1984) Oxidation of elemental-S in coastal-dune sands and soils. Plant Soil 77:87–95

    Article  CAS  Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Hjörleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AJ, Lascelles J (1966) Thiosulphate metabolism and rhodanese in Chromatium sp. strain D. J Gen Microbiol 42:357–370

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Tourova TP, Galinski EA, Muyzer G, Kuenen JG (2008) Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats. Int J Syst Evol Microbiol 58:2890–2897

    Article  CAS  PubMed  Google Scholar 

  • Starkey RL (1934) The production of polythionates from thiosulfate by microörganisms. J Bacteriol 28:387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steger D, Wentrup C, Braunegger C (2011) Microorganisms with novel dissimilatory (Bi)sulfite reductase genes are widespread and part of the core microbiota in low-sulfate peatlands. Appl Environ Microbiol 77:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz MA, Fischer U (1982) Cytochromes of the green sulfur bacterium Chlorobium vibrioforme thiosulfatophilum, purification, characterization and sulfur metabolism. Arch Microbiol 19:19–26

    Article  Google Scholar 

  • Stepanauskas R, Sieracki ME (2007) Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci U S A 104:9052–9057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabatabai MA (1984) Importance of sulfur in crop production. Biogeochemistry 1:45–62

    Article  CAS  Google Scholar 

  • Takakuwa S, Oae S, Okuyama T (1992) Biochemical aspects of microbial oxidation of inorganic sulfur compounds, in Organic Sulfur Chemistry, Biochemical Aspects. CRC Press, Boca Raton, pp 1–43

    Google Scholar 

  • Tang Y, Pingitore F, Mukhopadhyay A, Phan R et al (2007) Pathway confirmation and flux analysis of cental metabolic pathways in D. vulgaris, Hildenborough, using gas chromatography, mass spectrometry and fourtier transform ion cyclotrone resonance mass spectroscopy. J Bacteriol 189:940–949

    Article  CAS  PubMed  Google Scholar 

  • Then J, Trüper HG (1981) The role of thiosulfate in sulfur metabolism of Rhodopseudomonas globiformis. Arch Microbiol 130:143–146

    Article  CAS  Google Scholar 

  • Tourna M, Maclean P, Condron L, O'Callaghan M, Wakelin SA (2014) Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on functional gene analysis. FEMS Microbiol Ecol 88:538–549

    Google Scholar 

  • Tourova TP, Kovaleva OL, Bumazhkin BK, Patutina EO, Kuznetsov BB, Bryantseva IA, Gorlenko VM, Sorokin DY (2011) Application of ribulose-1, 5-bisphosphate carboxylase/oxygenase genes as molecular markers for assessment of the diversity of autotrophic microbial communities inhabiting the upper sediment horizons of the saline and soda lakes of the Kulunda Steppe. Microbiology 80:812–825

    Article  CAS  Google Scholar 

  • Trüper HG, Fischer U (1982) Anaerobic oxidation of sulfur compounds as electron donors for bacterial photosynthesis. Philos Trans R Soc Lond Ser B Biol Sci 298:529–542

    Article  Google Scholar 

  • Trüper HG, Pfennig N (1966) Sulfur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulfur in Thiocapsa floridana and Chromatium species. Int J Gen Mol Microbiol 32:261–276

    Google Scholar 

  • Tuttle JH (1980) Organic carbon utilization by resting cells of thiosulfate-utilizing marine heterotrphs. Appl Environ Microbiol 40:516–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urich T, Coelho R, Kletzin A, Frazao C (2005) The sulfur oxygenase reductase from Acidianus ambivalens is an icosatetramer as shown by crystallization and Patterson analysis. Biochim Biophys Acta 1747:267–270

    Article  CAS  PubMed  Google Scholar 

  • Vermeij P, Wietek C, Kahnert A, Wüest T, Kertesz MA (1999) Genetic organization of sulfurcontrolled aryl desulfonation in Pseudomonas putida S-313. Mol Microbiol 32:913–926

    Google Scholar 

  • Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wainwright M (1984) Sulfur oxidation in soils. Adv Agron 37:349–396

    Article  CAS  Google Scholar 

  • Wakai S, Kikumoto M, Kanao T, Kamimura K (2004) Involvement of sulfide: quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Biosci Biotechnol Biochem 68:2519–2528

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Hou W, Dong H, Jiang H, Huang L, Wu G, Zhang C, Song Z, Zhang Y, Ren H, Zhang J (2013) Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS One 8:e62901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White R, Engelen G (1997) Cellular automata as the basis of integrated dynamic regional modelling. Environ Plann B Plann Des 24:235–246

    Article  Google Scholar 

  • Williams CH (1972) Sulfur deficiency in Australia. Sulfur Inst J 8:5–8

    CAS  Google Scholar 

  • Williams PJ, Cloete TE (2008) Microbial community study of the iron ore concentrate of the Sishen Iron Ore Mine, South Africa. World J Microbiol Biotechnol 24:2531–2538

    Article  Google Scholar 

  • Wind T, Conrad R (1997) Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37:253–278

    Article  CAS  Google Scholar 

  • Wodara C, Bardischewsky F, Friedrich CG (1997) Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J Bacteriol 179:5014–5023

    Google Scholar 

  • Wu J, O’Donnell AG, Syers JK (1995) Influences of glucose, nitrogen and plant residues on the immobilization of sulphate-S in soil. Soil Biol Biochem 27:1363–1370

    Article  CAS  Google Scholar 

  • Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72:5478–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210

    Article  CAS  Google Scholar 

  • Xie C, Chen D, Li YQ (2005) Raman sorting and identification of single living micro-organisms with optical tweezers. Opt Lett 30:1800–1802

    Article  PubMed  Google Scholar 

  • Yao H, Conrad R, Wassmann R, Neue HU (1999) Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 47:269–295

    Article  CAS  Google Scholar 

  • Yousuf B, Kumar R, Mishra A, Jha B (2014) Unravelling the carbon and sulfur metabolism in coastal soil ecosystems using comparative cultivation independent genome-level characterisation of microbial communities. PLoS One 9:e107025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao C, Gupta VV, Degryse F, McLaughlin MJ (2017a) Abundance and diversity of sulphur-oxidising bacteria and their role in oxidising elemental sulphur in cropping soils. Biol Fertil Soils 53:159

    Article  CAS  Google Scholar 

  • Zhao C, Gupta VV, Degryse F, McLaughlin MJ (2017b) Effects of pH and ionic strength on elemental sulphur oxidation in soil. Biol Fertil Soils 53:247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, U. et al. (2018). Diversity of Sulfur-Oxidizing and Sulfur-Reducing Microbes in Diverse Ecosystems. In: Adhya, T., Lal, B., Mohapatra, B., Paul, D., Das, S. (eds) Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-10-6178-3_4

Download citation

Publish with us

Policies and ethics