Skip to main content

Biological Nitrogen Fixation: The Role of Underutilized Leguminous Plants

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Abstract

Soils in different parts of the world are generally being depleted of nitrogen (N), and this has now become a huge challenge to food production and security. Different sources of nutrients for enriching the soil have been evaluated in the past years especially the use of chemical fertilizers, but its usage is gradually dwindling as a result of numerous constraints, among which are environmental pollution, health challenges, and the negative impact of climate change. Better alternative strategies of replacing depleted soil N have been researched which include biological N fixation (BNF) using leguminous crops. Leguminous crops planted as cover crops, together with the symbiotic activities between root nodule bacteria and legumes, are the source of biologically fixed N. Because of the genetic diversity in legumes, there are so many underutilized leguminous crops whose potentials have not been fully tapped to understand their functionalities within the realm of BNF. This chapter brings to the limelight some of these legumes for biotechnological purpose in a bid to find a solution to soil infertility using the available cropping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adeleke MA, Haruna IM (2012) Residual nitrogen contributions from grain legumes to the growth and development of succeeding maize crop. ISRN Agron 2012:5

    Google Scholar 

  • Adeyemi A, Ibe A, Okedimma F (2015) Tree structural and species diversities in Okwangwo Forest, Cross River State, Nigeria. J Res For 7(2):36–53

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ajayi IA, Oderinde RA, Kajogbola DO, Uponi JI (2006) Oil content and fatty acid composition of some underutilized legumes from Nigeria. Food Chem 99(1):115–120

    Article  CAS  Google Scholar 

  • Arthikala MK, Sánchez-López R, Nava N, Santana O, Cárdenas L, Quinto C (2014) RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization. New Phytol 202(3):886–900

    Article  CAS  PubMed  Google Scholar 

  • Aserse AA (2013) Diversity and phylogeny of root nodule bacteria isolated from tree, shrub and food legumes of Ethiopia. Academic dissertation, Faculty of Agriculture and Forestry, University of Helsinki, Finland. p 62

    Google Scholar 

  • Beatty PH, Fischer JJ, Muench DG, Good AG (2015) Environmental and economic impacts of Biological Nitrogen-Fixing (BNF) cereal crops. In: Biological nitrogen fixation. Wiley, Hoboken, pp 1103–1116

    Chapter  Google Scholar 

  • Belel MD, Halim R, Rafii M, Saud H (2014) Intercropping of corn with some selected legumes for improved forage production: a review. J Agric Sci 6(3):48

    Google Scholar 

  • Bergman B, Rai A, Rasmussen U (2007) Cyanobacterial associations. In: Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 257–301

    Chapter  Google Scholar 

  • Bhat R, Karim A (2009) Exploring the nutritional potential of wild and underutilized legumes. Compr Rev Food Sci Food Saf 8(4):305–331

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57(3):235–270

    Article  Google Scholar 

  • Bottomley PJ, Myrold DD (2014) Biological N inputs. Soil Microbiol Ecol Biochemist 3:365–388

    Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330(6001):192–196

    Article  CAS  PubMed  Google Scholar 

  • Chankaew S, Isemura T, Isobe S, Kaga A, Tomooka N, Somta P, Hirakawa H, Shirasawa K, Vaughan DA, Srinives P (2014) Detection of genome donor species of neglected tetraploid crop Vigna reflexo-pilosa (creole bean), and genetic structure of diploid species based on newly developed EST-SSR markers from azuki bean (Vigna angularis). PLoS One 9(8):e104990

    Article  PubMed  PubMed Central  Google Scholar 

  • Chanway C, Anand R, Yang H (2014) Nitrogen fixation outside and inside plant tissues. In: Ohyama T (ed) Advances in biology and ecology of nitrogen fixation, pp 3–23. Available from: http://cdn.intechopen.com/pdfs-wm/46070.pdf. Accessed 21 July 2015

    Google Scholar 

  • Cooper JE, Scherer HW (2012) Chapter 16 – nitrogen fixation. In: Marschner P (ed) Marschner’s Mineral nutrition of higher plants, 3rd edn. Academic, San Diego, pp 389–408

    Chapter  Google Scholar 

  • Costa CB, Costa JA, de Queiroz LP, Borba EL (2013) Self-compatible sympatric Chamaecrista (Leguminosae-Caesalpinioideae) species present different interspecific isolation mechanisms depending on their phylogenetic proximity. Plant Syst Evol 299(4):699–711

    Article  Google Scholar 

  • Courty PE, Smith P, Koegel S, Redecker D, Wipf D (2015) Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Crit Rev Plant Sci 34(1–3):4–16

    Article  CAS  Google Scholar 

  • Dahlin S, Rusinamhodzi L (2014) Review of interventions and technologies for sustainable intensification of smallholder crop production in sub-humid sub-Saharan Africa, vol 5. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Dahmardeh M, Ghanbari A, Syahsar B, Ramrodi M (2010) The role of intercropping maize (Zea mays L.) and Cowpea (Vigna unguiculata L.) on yield and soil chemical properties. Afr J Agric Res 5(8):631–636

    Google Scholar 

  • Dansi A, Vodouhè R, Azokpota P, Yedomonhan H, Assogba P, Adjatin A, Loko YL, Dossou-Aminon I, Akpagana K (2012) Diversity of the neglected and underutilized crop species of importance in Benin. Sci World J 2012:19

    Article  Google Scholar 

  • Dawson J (2007) Ecology of actinorhizal plants. In: Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 199–234

    Google Scholar 

  • Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13(1):162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ (2016) Chasing unicorns: nodulation origins and the paradox of novelty. Am J Bot 103(11):1865–1868

    Article  PubMed  Google Scholar 

  • Dwivedi SL, Sahrawat KL, Upadhyaya HD, Mengoni A, Galardini M, Bazzicalupo M, Biondi EG, Hungria M, Kaschuk G, Blair MW (2015a) Chapter one-advances in host plant and Rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. Adv Agron 129:1–116

    Article  Google Scholar 

  • Dwivedi A, Dev I, Kumar V, Yadav RS, Yadav M, Gupta D, Singh A, Tomar S (2015b) Potential role of maize-legume intercropping systems to improve soil fertility status under smallholder farming systems for sustainable agriculture in India. J Life Sci Biotechnol Pharma Res 4(3):145–157

    Google Scholar 

  • Gepts P (2014) Beans: origins and development. In: Encyclopedia of global archaeology. Springer, New York, pp 822–827

    Chapter  Google Scholar 

  • Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT, Weeden NF, Young ND (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137(4):1228–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451(7176):293–296

    Article  CAS  PubMed  Google Scholar 

  • Haber F (1922) The production of ammonia from nitrogen and hydrogen. Naturwissenschaften 10:1041

    Article  CAS  Google Scholar 

  • Hardy RW, Holsten R, Jackson E, Burns R (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43(8):1185–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herridge D, Palmer B, Nurhayati D, Peoples M (1996) Evaluation of the xylem ureide method for measuring N 2 fixation in six tree legume species. Soil Biol Biochem 28(3):281–289

    Article  CAS  Google Scholar 

  • Hillocks R, Bennett C, Mponda O (2012) Bambara nut: a review of utilisation, market potential and crop improvement. Afr Crop Sci J 20(1)

    Google Scholar 

  • Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114(8):4041–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Htwe AZ, Yamakawa T (2015) Enhanced plant growth and/or nitrogen fixation by leguminous and non-leguminous crops after single or dual inoculation of Streptomyces griseoflavus P4 with Bradyrhizobium strains. Afr J Microbiol Res 9(49):2337–2344

    Article  CAS  Google Scholar 

  • Iannetta PP, Young M, Bachinger J, Bergkvist G, Doltra J, Lopez-Bellido RJ, Monti M, Pappa VA, Reckling M, Topp CF (2016) A comparative nitrogen balance and productivity analysis of legume and non-legume supported cropping systems: the potential role of biological nitrogen fixation. Front Plant Sci 7

    Google Scholar 

  • Isaac ME, Carlsson G, Ghoulam C, Makhani M, Thevathasan NV, Gordon AM (2014) Legume performance and nitrogen acquisition strategies in a tree-based agroecosystem. Agroecol Sust Food 38(6):686–703

    Article  Google Scholar 

  • Istfan N, Murray E, Janghorbani M, Young VR (1983) An evaluation of the nutritional value of a soy protein concentrate in young adult men using the short-term N-balance method. J Nutr 113(12):2516–2523

    CAS  PubMed  Google Scholar 

  • Jia H-P, Quadrelli EA (2014) Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev 43(2):547–564

    Article  CAS  PubMed  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) 4.58 – Plant and Endophyte relationships: nutrient management. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic, Burlington, pp 713–727

    Chapter  Google Scholar 

  • Jones FP, Clark IM, King R, Shaw LJ, Woodward MJ, Hirsch PR (2016) Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes–a genome comparison. Sci Rep 6

    Google Scholar 

  • Jonsson K, Fidjeland L, Maghembe J, Högberg P (1988) The vertical distribution of fine roots of five tree species and maize in Morogoro, Tanzania. Agrofor Syst 6(1–3):63–69

    Article  Google Scholar 

  • Karikari S (2004) A decade of bambara groundnut agronomic research at the Botswana College of Agriculture. UNISWA J Agric

    Google Scholar 

  • Karmakar K, Rana A, Rajwar A, Sahgal M, Johri BN (2015) Legume-rhizobia symbiosis under stress. In: Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 241–258

    Google Scholar 

  • Karunaratne A, Azam-Ali S, Izzi G, Steduto P (2011) Calibration and validation of FAO-AquaCrop model for irrigated and water deficient Bambara groundnut. Exp Agric 47(03):509–527

    Article  Google Scholar 

  • Kennedy IR, Choudhury A, Kecskés ML, Roughley RJ, Hien NT (2005) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? In: Biological nitrogen fixation, sustainable agriculture and the environment. Springer, Dordrecht, pp 271–272

    Chapter  Google Scholar 

  • Kucho K-i, Kakoi K, Yamaura M, Higashi S, Uchiumi T, Abe M (2009) Transient transformation of Frankia by fusion marker genes in liquid culture. Microbes Environ 24(3):231–240

    Article  PubMed  Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Naidu R (2015) Environmental technology & innovation

    Google Scholar 

  • Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169(1):2–17

    Article  PubMed  Google Scholar 

  • Lawal I, Uzokwe N, Igboanugo A, Adio A, Awosan E, Nwogwugwu J, Faloye B, Olatunji B, Adesoga A (2010) Ethno medicinal information on collation and identification of some medicinal plants in Research Institutes of South-west Nigeria. Afr J Pharm Pharmacol 4(1):001–007

    Google Scholar 

  • Legume (2017) Scientific classification and characteristics Britannica online for kids. Encyclopædia Britannica, Inc, Chicago

    Google Scholar 

  • Legwaila GM, Marokane TK, Mojeremane W (2012) Effects of intercropping on the performance of maize and cowpeas in Botswana. Int J Agric For 2(6):307–310

    Google Scholar 

  • Lindström K, Aserse AA, Mousavi SA (2015) Evolution and taxonomy of nitrogen-fixing organisms with emphasis on rhizobia. Biol Nitrogen Fixation:21–37

    Google Scholar 

  • Liu J, Kelley MS, Wu W, Banerjee A, Douvalis AP, Wu J, Zhang Y, Schatz GC, Kanatzidis MG (2016) Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc Natl Acad Sci 113(20):5530–5535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • McBride JR (2017) Composition. In: The world’s urban forests. Springer, Cham, pp 71–139

    Google Scholar 

  • McGlynn SE, Boyd ES, Peters JW, Orphan VJ (2013) Classifying the metal dependence of uncharacterized nitrogenases. Front Microbiol 3:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohale KC, Belane AK, Dakora FD (2014) Symbiotic N nutrition, C assimilation, and plant water use efficiency in Bambara groundnut (Vigna subterranea L. Verdc) grown in farmers’ fields in South Africa, measured using 15N and 13C natural abundance. Biol Fertil Soils 50(2):307–319

    Article  CAS  Google Scholar 

  • Mohamed MIE (2016) Characterization of Flavonoids from Albizia amara leaves and their biological activity on microbes. Sudan University of Science and Technology, Khartoum

    Google Scholar 

  • Morris B (2003) Legumes. In: Encyclopedia of food and culture, vol 3. Charles Scribner & Sons, New York

    Google Scholar 

  • Mueller TJ, Welsh EA, Pakrasi HB, Maranas CD (2016) Identifying regulatory changes to facilitate nitrogen fixation in the nondiazotroph Synechocystis sp. PCC 6803. ACS Synth Biol 5(3):250–258

    Article  CAS  PubMed  Google Scholar 

  • Mulongoy K (1995) Technical paper 2: biological nitrogen fixation. Food and agriculture Organization of the United Nations (FAO) corporate document repository, ILRI training manual 2

    Google Scholar 

  • Nana EM, Alemneh AA (2015) Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: a review. Mol Soil Biol 6(4):1–12

    Google Scholar 

  • Nasielski J (2015) Soybean N2-fixation rates and yield in tree-based intercropping systems: effects of water limitations and environmental modifications. University of Toronto

    Google Scholar 

  • Navarro-Noya YE, Hernández-Mendoza E, Morales-Jiménez J, Jan-Roblero J, Martínez-Romero E, Hernández-Rodríguez C (2012) Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings. Appl Soil Ecol 62(0):52–60

    Article  Google Scholar 

  • Ngwira AR, Aune JB, Mkwinda S (2012) On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crops Res 132:149–157

    Article  Google Scholar 

  • Nna-Mvondo D, Navarro-González R, Raulin F, Coll P (2005) Nitrogen fixation by corona discharge on the early Precambrian Earth. Orig Life Evol Biosph 35(5):401–409

    Article  CAS  PubMed  Google Scholar 

  • Nweke I, Emeh H (2013) The response of Bambara ground nut (Vigna subterranean L) to phosphate fertilizers levels in Igbariam South East Nigeria. IOSR J of Agric & Vet Sci 2(1):28–34

    Article  Google Scholar 

  • Nyalemegbe K, Osakpa T (2012) Rotation of maize with some leguminous food crops for sustainable production on the vertisols of the Accra plains of Ghana. West Afr J Appl Ecol 20(2):33–40

    Google Scholar 

  • Ogah E, Ogbodo E (2012) Assessing the impact of biodiversity conservation in the management of maize stalk borer (Busseola fusca F.) in Nigeria. Curr Trends Technol Sci II II: 234–238

    Google Scholar 

  • Olofsson M, Egardt J, Singh A, Ploug H (2016) Inorganic phosphorus enrichments in Baltic Sea water have large effects on growth, carbon fixation, and N2 fixation by Nodularia spumigena. Aquat Microb Ecol 77(2):111–123

    Article  Google Scholar 

  • Paerl HW, Otten TG (2016) Duelling ‘CyanoHABs’: unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2-fixing harmful cyanobacteria. Environ Microbiol 18(2):316–324

    Article  CAS  PubMed  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34(1–3):17–42

    Article  Google Scholar 

  • Rahman A, Yamin A (2016) A genomic analysis of Paenibacillus macerans ATCC 8244, a gram positive nitrogen fixing bacterium. Universiti Sains Malaysia, George Town

    Google Scholar 

  • Remigi P, Zhu J, Young JPW, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Roat-Malone R (2014) Biological inorganic chemistry; inorganic chemistry of biological compounds. Springer, New York

    Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smil V (2004) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge, MA

    Google Scholar 

  • Sprent JI, Odee DW, Dakora FD (2010) African legumes: a vital but under-utilized resource. J Exp Bot 61(5):1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4(1):2

    Article  Google Scholar 

  • Thamdrup B (2012) New pathways and processes in the global nitrogen cycle. Annu Rev Ecol Evol Syst 43:407–428

    Article  Google Scholar 

  • Tobias R (2004) Beans. In: The Oxford encyclopedia of food and drink in America, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Wagner S (2012) Biological nitrogen fixation. Nat Educ Knowl 3(10):15

    Google Scholar 

Download references

Acknowledgments

South Africa’s National Research Foundation granted OOB research funds (UID81192 and UID104015) that have supported her work in the laboratory. North-West University granted CFA a student bursary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola Oluranti Babalola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babalola, O.O., Olanrewaju, O.S., Dias, T., Ajilogba, C.F., Kutu, F.R., Cruz, C. (2017). Biological Nitrogen Fixation: The Role of Underutilized Leguminous Plants. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_20

Download citation

Publish with us

Policies and ethics