Skip to main content

FPGA Based Low Power Hardware Implementation for Quality Access Control of a Compressed Gray Scale Image

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2017)

Abstract

This paper proposes a FPGA based hardware for quality access control of image based on passive data-hiding scheme in discrete cosine transform (DCT) domain. Host image is divided in to (8 × 8) non overlapping blocks and 2-D DCT is performed. The nonzero AC coefficients of a block are modulated based on modulation factor. The amount of quality degradation governs by modulation factor and interns perform quality access control. The modulated coefficients are Huffman coded for efficient storage and transmissions. All the necessary information are encoded and send to the decoder as a secret key along with the Huffman coded coefficient. User having the full knowledge of the key can demodulate to access full quality of image. Additionally, a low-power reliable hardware for real-time application is proposed and tested over large number of benchmark images. The experimental result shows its dominance in terms of optimized utilization of resource, very low power consumption of 71.735 mW and operates in a frequency of 113 MHz for processing of (256 × 256) sized images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Schneck, P.B.: Persistent access control to prevent piracy of digital information. Proc. IEEE 87(7), 1239–1250 (1999)

    Article  Google Scholar 

  2. Kountchev, R., Milanova, M., Kountcheva, R.: Content protection and hierarchical access control in image databases. In: International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), pp. 1–6 (2015)

    Google Scholar 

  3. Yang, K., Liu, Z., Jia, X., Shen, X.S.: Time-domain attribute-based access control for cloud-based video content sharing: a cryptographic approach. IEEE Trans. Multimed. 18(5), 940–950 (2016)

    Article  Google Scholar 

  4. Hu, L., Li, Y., Li, T., Li, H., Chu, J.: The efficiency improved scheme for secure access control of digital video distribution. Multimed. Tools Appl. 75(20), 12645–12662 (2016)

    Article  Google Scholar 

  5. Lee, C.C., Chung, P.S., Hwang, M.S.: A survey on attribute-based encryption schemes of access control in cloud environments. IJ Netw. Secur. 15(4), 231–240 (2013)

    Google Scholar 

  6. Phadikar, A., Mandal, H., Maity, G.K., Chiu, T.L.: A new model of QIM data hiding for quality access control of digital image. In: International Conference on Soft-Computing and Networks Security (ICSNS), pp. 1–5 (2015)

    Google Scholar 

  7. Lin, S.L., Huang, C.F., Liou, M.H., Chen, C.Y.: Improving histogram-based Reversible information hiding by an optimal weight-based prediction scheme. J. Inf. Hiding Multimed. Sig. Process. 4(1), 19–33 (2013)

    Google Scholar 

  8. Grosbois, R., Gerbelot, P., Ebrahimi, T.: Authentication and access control in the JPEG 2000 compressed domain. In: 46th SPIE Annual Meeting, Applications of Digital Image Processing, pp. 95–104 (2001)

    Google Scholar 

  9. Chang, F.C., Huang, H.C., Hang, H.M.: Layered access control schemes on watermarked scalable media. J. VLSI Sig. Proc. 49(3), 443–455 (2007)

    Article  Google Scholar 

  10. Phadikar, A., Maity, S.P., Mandal, M.K.: Quantization based data hiding scheme for quality access control of images. In: 12th IASTED International Conference on Internet and Multimedia Systems and Applications (IMSA 2008), pp. 113–118 (2008)

    Google Scholar 

  11. Maes, M., Kalker, T., Linnartz, J.P.M.G., Talstra, J., Depovere, G.F.G., Haitsma, J.: Digital Watamarking for DVD video copyright protection. IEEE Sig. Process. Mag. 17(1), 47–57 (2000)

    Article  Google Scholar 

  12. Maity, S.P., Kundu, M.K.: Distortion free image-in-image communication with implementation in FPGA. AEU Int. J. Electron. Commun. 67(1), 438–447 (2013)

    Article  Google Scholar 

  13. Mohanty, S.P., Kougianos, E., Ranganathan, N.: VLSI architecture and chip for combined invisible robust and fragile watermarking. IET Comput. Digital Tech. 1(5), 600–611 (2007)

    Article  Google Scholar 

  14. Maity, S.P., Kundu, M., Maity, S.: Dual purpose FWT domain spread spectrum image watermarking in real time. Int. J. Comput. Electric. Eng. 35(2), 415–433 (2009)

    Article  MATH  Google Scholar 

  15. Maity, H.K., Maity, S.P.: FPGA implementation of reversible watermarking in digital image using reversible contrast mapping. J. Syst. Softw. 96(1), 93–104 (2014)

    Article  Google Scholar 

  16. Darji, A.D., Lad, T.C., Merchant, S.N., Chandorkar, A.N.: Watermarking hardware based on wavelet coefficients quantization method. Circ. Syst. Sig. Process. 32(6), 2559–2579 (2013)

    Article  MathSciNet  Google Scholar 

  17. Mohankumar, N., Devi, M.N., Nath, D.B., Scaria, A.: VLSI architecture for compressed domain video Watermarking. In: Advances in digital image processing and information technology, pp. 405–416 (2011)

    Google Scholar 

  18. Tsai, T.H., Lu, C.Y.: A systems level design for embedded watermark technique using DSC systems. In: Proceedings of the IEEE International Workshop on Intelligent Signal Processing and Communication Systems (2001)

    Google Scholar 

  19. Nelson, G.R., Jullien, G.A., Pecht, O.Y.: CMOS image sensor with watermarking capabilities. In: Proceedings of the IEEE Conference on Circuits and Systems (ISCAS), pp. 5326–5329 (2005)

    Google Scholar 

  20. Ghosh, S., Talapatra, S., Chatterjee, N., Maity, S.P., Rahaman, H.: FPGA based implementation of embedding and decoding architecture for binary watermark by spread spectrum scheme in spatial domain. Bonfring Int. J. Adv. Image Process. 2(4), 01–08 (2012)

    Article  Google Scholar 

  21. Petitjean, G., Dugelay, J.L., Gabriele, S., Rey, C., Nicolai, J.: Towards real-time video watermarking for systems-on-chip. Proc. IEEE Int. Conf. Multimed. Exp. 1(1), 597–600 (2002)

    Article  Google Scholar 

  22. Phadikar, A., Kundu, M.K., Maity, S.P.: Quality access control of a compressed gray scale image. Proc. Comput. Vis. Pattern Recogn. Image Process. Graph. 1(1), 13–19 (2008)

    Google Scholar 

  23. Kitsos, P., Voros, N.S., Dagiuklas, T., Skodras, A.N.: A high speed FPGA implementation of the 2D DCT for ultra high definition video coding. In: 18th International Conference on Digital Signal Processing (DSP), vol. 1(1), pp. 1–5 (2013)

    Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Technology (MOST), Taiwan R.O.C., under grant number MOST 106-3113-E-155-001-CC2, 105-3113-E-155-001, 104-3113-E-155-001, 103-3113-E-155-001, 103-2221-E-155-028-MY3 for their kind funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Mandal, H., Maity, G.K., Phadikar, A., Chiu, TL. (2017). FPGA Based Low Power Hardware Implementation for Quality Access Control of a Compressed Gray Scale Image. In: Mandal, J., Dutta, P., Mukhopadhyay, S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 775. Springer, Singapore. https://doi.org/10.1007/978-981-10-6427-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6427-2_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6426-5

  • Online ISBN: 978-981-10-6427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics