Skip to main content

Weighted One-Dependence Forests Classifier

  • Conference paper
  • First Online:
Parallel Architecture, Algorithm and Programming (PAAP 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 729))

Abstract

Averaged One-Dependence Estimators (AODE) combines all Super Parent-One-Dependence Estimators (SPODEs) with ensemble learning strategy. AODE demonstrates good classification accuracy with very little extra computational cost. However, it ignores the dependences between attributes. In this paper, we propose aggregating extended one-dependence estimators named Weighted One-Dependence Forests (WODF) which splits each SPODE into multiple subtrees by attribute selection. WODF assigns the weight to every subtree with conditional mutual information. Extensive experiments and comparisons on 40 UCI data sets demonstrate that WODF outperforms AODE and state-of-the-art weighted AODE algorithms. Results also confirm that WODF provides an appropriate tradeoff between runtime efficiency and classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chien, Y.: Pattern Classification and Scene Analysis, pp. 462–463. Wiley, Hoboken (1985)

    Google Scholar 

  2. Yang, Y., Webb, G.I., Cerquides, J., et al.: To select or to weigh: a comparative study of linear combination schemes for superparent-one-dependence estimators. IEEE Trans. Knowl. Data Eng. 19(12), 1652–1665 (2007)

    Article  Google Scholar 

  3. Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive Bayes: aggregating one-dependence estimators. Mach. Learn. 58(1), 5–24 (2005)

    Article  MATH  Google Scholar 

  4. Taheri, S., Mammadov, M.: Structure learning of Bayesian networks using unrestricted dependency algorithm. In: The Second International Conference on Advances in Information Mining and Management, pp. 54–59 (2012)

    Google Scholar 

  5. Sahami, M.: Learning Limited Dependence Bayesian Classifiers, pp. 335–338 (1998)

    Google Scholar 

  6. Yang, Y., Korb, K., Ting, K.M., Webb, G.I.: Ensemble selection for superparent-one-dependence estimators. In: Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS, vol. 3809, pp. 102–112. Springer, Heidelberg (2005). doi:10.1007/11589990_13

    Chapter  Google Scholar 

  7. Wu, J., Pan, S., Zhu, X., et al.: SODE: self-adaptive one-dependence estimators for classification. Pattern Recogn. 51, 358–377 (2015)

    Article  Google Scholar 

  8. Zheng, Z., Webb, G.I.: Lazy learning of Bayesian rules. Mach. Learn. 41(1), 53–84 (2000)

    Article  Google Scholar 

  9. Jiang, L., Zhang, H.: Weightily averaged one-dependence estimators. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS, vol. 4099, pp. 970–974. Springer, Heidelberg (2006). doi:10.1007/978-3-540-36668-3_116

    Chapter  Google Scholar 

  10. Zhang, H., Sheng, S.: Learning weighted naive Bayes with accurate ranking. In: IEEE International Conference on Data Mining, pp. 567–570 (2004)

    Google Scholar 

  11. Hall, M.: A decision tree-based attribute weighting filter for naive Bayes. J Knowl.-Based Syst. 20(2), 120–126 (2007)

    Article  Google Scholar 

  12. Jiang, L., Zhang, H., Cai, Z., et al.: Weighted average of one-dependence estimators. J. Exp. Theor. Artif. Intell. 24(2), 219–230 (2012)

    Article  Google Scholar 

  13. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. J. Mach. Learn. 53(1–2), 23–69 (2003)

    Article  MATH  Google Scholar 

  14. Frank, A., Asuncion, A.: UCI Machine Learning Repository, vol. 23 (2013)

    Google Scholar 

  15. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1022–1029 (1993)

    Google Scholar 

  16. Kohavi, R., Wolpert, D.: Bias plus variance decomposition for zero-one loss functions. In: Proceedings of European Conference on Machine Learning, Finland, pp. 275–283 (1996)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant No. 61272209) and the Agreement of Science & Technology Development Project, Jilin Province (No. 20150101014JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this paper

Cite this paper

Zhong, G., Wang, L. (2017). Weighted One-Dependence Forests Classifier. In: Chen, G., Shen, H., Chen, M. (eds) Parallel Architecture, Algorithm and Programming. PAAP 2017. Communications in Computer and Information Science, vol 729. Springer, Singapore. https://doi.org/10.1007/978-981-10-6442-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6442-5_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6441-8

  • Online ISBN: 978-981-10-6442-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics