Skip to main content

Abstract

Phycobiliproteins (PBPs) have widespread biotechnological applications including nutraceuticals, pharmaceuticals, food industry, cosmetics, agriculture, bioremediation, aquaculture, biofuels, and bioenergy. PC is water-soluble, brilliantly blue colored, and most widely used as natural fluorescent and pharmaceutical agents in various biotechnological applications. However, PE and APC are mainly used for fluorescent, cosmetics, and certain other biotechnological applications. Although numerous applications have been found on commercial production of PBPs from various cyanobacteria species, however, certain cyanobacterium like Spirulina sp. (Arthrospira) is much exploited for large-scale production. To enhance the diversity of PBP-based bioproduct, biotechnological companies of leading country have followed a wide range of extraction and purification technology to obtain higher product quality. Thus, modern research and development about novel structural configuration biliproteins have expanded the further application of PBPs in many therapeutic sciences. PC also acts as natural photosensitizer that is used for light-oriented therapy for tumor cells called as photodynamic therapy. PBP-based drugs are still in progress for use in various clinical applications. In this chapter, we have focused on therapeutic significance and probable mechanism of action of PBPs in various human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    Article  CAS  PubMed  Google Scholar 

  • Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32:41–52

    PubMed  PubMed Central  Google Scholar 

  • Ayehunie S, Belay A, Baba TW, Ruprecht RM (1998) Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). J Acquir Immune Defic Syndr Hum Retrovirol 18:7–12

    Article  CAS  PubMed  Google Scholar 

  • Basha OM, Hafez RA, El-Ayouty YM, Mahrous KF, Bareedy MH, Salama AM (2008) C-phycocyanin inhibits cell proliferation and may induce apoptosis in human HepG2 cells. Egypt J Immunol 15:161–167

    PubMed  Google Scholar 

  • Benedetti S, Benvenutti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F (2004) Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75:2353–2362

    Article  CAS  PubMed  Google Scholar 

  • Bermejo P, Piñero E, Villar AM (2008) Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulina platensis. Food Chem 110:436–445

    Article  CAS  PubMed  Google Scholar 

  • Bharathiraja S, Seo H, Manivasagan P, Moorthy MS, Park S, Oh J (2016) In vitro photodynamic effect of phycocyanin against breast cancer cells. Molecules 21(11):1470

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Sharma V (2016) C-phycocyanin modulates the cytotoxicity of platinum based anticancer drugs in lung cancer cell lines. Int J Sci Res 5:2

    Google Scholar 

  • Bingula R, Dupuis C, Pichon C, Berthon J-Y, Filaire M, Pigeon L, Filaire E (2016) Study of the effects of betaine and/or C-phycocyanin on the growth of lung cancer A549 cells in vitro and in vivo. J Oncol 2016:8162952

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai X-h, He L, Jiang-Jialun J, Xu X, Zheng S (1995) The experimental study of application of phycocyanin in cancer laser therapy. Chin Mar Drug 1:15–18

    Google Scholar 

  • Cao B, Lei ZY, Chen H et al (2008) YB-13, a novel synthetic microtubule inhibitor, induces apoptosis of HeLa cells and its mechanism. Chin Pharmacol Bull 1:123–127

    Google Scholar 

  • Chamorro G, Salazar M, Favila L, Bourges H (1996) Pharmacology and toxicology of Spirulina alga. Rev Investig Clin 48:389–399

    CAS  Google Scholar 

  • Chaneva G, Furnadzhieva S, Minkova K, Lukavsky J (2007) Effect of light and temperature on the cyanobacterium Arthronema africanum- a prospective phycobiliprotein-producing strain. J Appl Phycol 19:537–544

    Article  CAS  Google Scholar 

  • Chen JJ, Ren H (2007) Research progress of anti-tumor effect of COX-2 selective inhibitors. China Pharm 18:1508–1509

    CAS  Google Scholar 

  • Chen F, Zhang Q (1995) Inhibitive effects of spirulina on aberrant crypts in colon induced by dimethylhydrazine. Zhonghua Yu Fang Yi Xue Za Zhi 29:13–17

    CAS  PubMed  Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18:603–608

    Article  CAS  Google Scholar 

  • Chen JC, Liu KS, Yang TJ et al (2012) Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells. Nutr Neurosci 15:252–256

    Article  CAS  PubMed  Google Scholar 

  • Chen H-W, Yang T-S, Chen M-J, Chang Y-C, Eugene I, Wang C, Ho C-L, Lai Y-J, Yu C-C, Chou J-C (2014a) Purification and immunomodulating activity of C-phycocyanin from Spirulina platensis cultured using power plant flue gas. Process Biochem 49:1337–1344

    Article  CAS  Google Scholar 

  • Chen EP, Markosyan N, Connolly E et al (2014b) Myeloidcell COX-2 deletion reduces mammary tumor growth through enhanced cytotoxic T-lymphocyte function. Carcinogenesis 35:1788–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherng S-C, Cheng S-N, Tarn A, Chou T-C (2007) Anti-inflammatory activity of c-phycocyanin in lipopolysaccharide-stimulated RAW 264.7 macrophages. Life Sci 81:1431–1435

    Article  CAS  PubMed  Google Scholar 

  • Chiu H-F, Yang S-P, Kuo Y-L, Lai Y-S, Chou T-C (2006) Mechanisms involved in the antiplatelet effect of C-phycocyanin. Br J Nutr 95:435–440

    Article  CAS  PubMed  Google Scholar 

  • Choi S-E, Sohn S, Cho J-W, Shin E-A, Song P-S, Kang Y (2004) 9-hydroxypheophorbide -induced apoptotic death of MCF-7 breast cancer cells is mediated by c-Jun N-terminal kinase activation. J Photochem Photobiol B Biol 73:101–107

    Article  CAS  Google Scholar 

  • Cian RE, Lopez-Posadas RL, Drago SR, de Medina FS, Martinez-Augustin O (2012) Immunomodulatory properties of the protein fraction from Phorphyra columbina. J Agric Food Chem 60:8146–8154

    Article  CAS  PubMed  Google Scholar 

  • Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C (2009) p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 29:2594–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksen NT (2008) Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14

    Article  CAS  PubMed  Google Scholar 

  • Esbona K, Inman D, Saha S et al (2016) COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res 18:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farooq SM, Boppana NB, Devarajan A, Sekaran SD, Shankar EM (2014) C-phycocyanin confers protection against oxalate mediated oxidative stress and mitochondrial dysfunctions in MDCK cells. PLoS One 9:e103361

    Article  Google Scholar 

  • Fernandez-Rojas B, Medina-Campos ON, Hernandez-Pando R, Negrette-Guzman M, Huerta-Yepez S, Pedraza-Chaverri J (2014) C-phycocyanin prevents cisplatin-induced nephrotoxicity through inhibition of oxidative stress. Food Funct 5:480–490

    Article  CAS  PubMed  Google Scholar 

  • Forstermann U, Schmidt HHW, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murand R (1991) Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 42:1849–1857

    Article  CAS  PubMed  Google Scholar 

  • Gantar M, Dhandayuthapani S, Rathinavelu A (2012) Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP. J Med Food 15:1091–1095

    Article  CAS  PubMed  Google Scholar 

  • Gardeva E, Toshkova E, Yossifova L, Minkova K, Ivanova N, Gigova L (2014) Antitumor activity of C-phycocyanin from Arthronema africanum (Cyanophyceae). Braz Arch Biol Technol 57:675–684

    Article  CAS  Google Scholar 

  • Ghosh S et al (2006) Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-κB activation and cell survival. Cancer Cell 10:215–226

    Article  CAS  PubMed  Google Scholar 

  • González R, Rodríques S, Romay C, Ancheta O, González A, Armesto J, Remirez D, Merino N (1999) Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats. Pharmacol Res 39:55–59

    Article  PubMed  Google Scholar 

  • Guo F et al (2013) MTOR regulates DNA damage response through NF-κB-mediated FANCD2 pathway in hematopoietic cells. Leukemia 27:2040–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Dwivedi UN, Khandelwal S (2011) C-phycocyanin: an effective protective agent against thymic atrophy by tributyltin. Toxicol Lett 204:2–11

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhang D, Xie F, Lin D (2015) The potential role of COX-2 in cancer stem cell-mediated canine mammary tumor initiation: an immunohistochemical study. J Vet Sci 16:225–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang J, Lee H-J, Lee W-H, Suk K (2010) NF-κB as a common signaling pathway in ganglioside-induced autophagic cell death and activation of astrocytes. J Neuroimmunol 226:66–72

    Article  CAS  PubMed  Google Scholar 

  • Iwata K, Inayama T, Kato T (1990) Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. J Nutr Sci Vitaminol 36:165–171

    Article  CAS  PubMed  Google Scholar 

  • Javelaud D, BesancËon F (2001) NF-kB activation results in rapid inactivation of JNK in TNFa-treated Ewing sarcoma cells: a mechanism for the anti-apoptotic effect of NF-kB. Oncogene 20:4365–4372

    Article  CAS  PubMed  Google Scholar 

  • Kahn M, Varadharaj S, Shobha JC, Naidu MU, Parinandi NL, Kutala VK, Kuppusamy P (2006) C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes. J Cardiovasc Pharmacol 47:9–20

    Article  Google Scholar 

  • Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23:21–48

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Lee EH, Cho HH, Moon YH (1998) Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by Spirulina. Biochem Pharmacol 55:1071–1076

    Article  CAS  PubMed  Google Scholar 

  • Kumari RP, Sivakumar J, Thankappan B, Anbarasu K (2013) C-phycocyanin modulates selenite-induced cataractogenesis in rats. Biol Trace Elem Res 151:59–67

    Article  CAS  PubMed  Google Scholar 

  • Kumari RP, Ramkumar S, Thankappan B et al (2015) Transcriptional regulation of crystallin, redox, and apoptotic genes by C-phycocyanin in the selenite-induced cataractogenic rat model. Mol Vis 21:26–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kutay U, Ahnert-Hilger G, Hartmann E, Wiedenmann B, Rapoport TA (1995) Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. EMBO J 14:217–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee I (2015) Betaine is a positive regulator of mitochondrial respiration. Biochem Biophys Res Commun 456:621–625

    Article  CAS  PubMed  Google Scholar 

  • Li B, Gao M-H, Zhang X-C, Chu X-M (2006) Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol Appl Biochem 43:155–164

    Article  CAS  PubMed  Google Scholar 

  • Li B, Chu X, Gao M, Li W (2010) Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin. Acta Biochim Biophys Sin 42:80–89

    Article  CAS  PubMed  Google Scholar 

  • Li B, Chu XM, Gao MH (2011) Treatment of hela tumor in mice with c-phycocyanin mediated photodynamic therapy and its immune mechanism underlying apoptosis. Chin J Laser Med Surg 20:1–6

    Google Scholar 

  • Li B, Chu X-M, Xu Y-J, Yang F, Lv C-Y, Nie S-M (2013) CD59 underlines the antiatherosclerotic effects of C-phycocyanin on mice. BioMed Res Int 2013:729413

    PubMed  PubMed Central  Google Scholar 

  • Li B, Gao MH, Chu XM et al (2015) The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo. Eur J Pharmacol 749:107–114

    Article  CAS  PubMed  Google Scholar 

  • Li B, Gao MH, Lv CY, Yang P, Yin QF (2016) Study of the synergistic effects of all-transretinoic acid and C-phycocyanin on the growth and apoptosis of A549 cells. Eur J Cancer Prev 25:97–101

    Article  PubMed  CAS  Google Scholar 

  • Liao G, Gao B, Gao Y, Yang X, Cheng X, Ou Y (2016) Phycocyanin inhibits tumorigenic potential of pancreatic cancer cells: role of apoptosis and autophagy. Sci Rep 6:34564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Huang Y, Zhang R, Cai T, Yu C (2016) Medical application of Spirulina platensis derived C-phycocyanin. Evid Based Complement Alternat Med 2016:7803846

    PubMed  PubMed Central  Google Scholar 

  • Lynch MA (1998) Age-related impairment in long-term potentiation in hippocampus: a role for the cytokine, interleukin-1? Prog Neurobiol 56:571–589

    Article  CAS  PubMed  Google Scholar 

  • Marín-Prida J, Pentón-Rol G, Rodrigues FP et al (2012) C-phycocyanin protects SH-SY5Y cells from oxidative injury, rat retina from transient ischemia and rat brain mitochondria from Ca2+/phosphate-induced impairment. Brain Res Bull 89:159–167

    Article  PubMed  CAS  Google Scholar 

  • Martinez SE, Chen Y, Ho EA, Martinez SA, Davies NM (2015) Pharmacological effects of a C-phycocyanin-based multicomponent neutraceutical in an in-vitro canine chondrocyte model of osteoarthritis. Can J Vet Res 79:241–249

    PubMed  PubMed Central  Google Scholar 

  • Miranda MS, Cintra RG, Barros SB, Mancini Filho J (1998) Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res 31:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Siddiqui WA, Khandelwal S (2015) C-phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: a comparative efficacy evaluation with N-acetyl cysteine in adult rat brain. Chem Biol Interact 238:138–150

    Article  CAS  PubMed  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  • Muthulakshmi M, Saranya A, Sudha M, Selvakumar G (2012) Extraction, partial purification, and antibacterial activity of phycocyanin from Spirulina isolated from fresh water body against various human pathogens. J Algal Biomass Util 3:7–11

    Google Scholar 

  • Nagaoka S, Shimizu K, Kaneko H et al (2005) A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J Nutr 135:2425–2430

    CAS  PubMed  Google Scholar 

  • Nishanth RP, Ramakrishna BS, Jyotsna RG et al (2010) Cphycocyanin inhibits MDR1 through reactive oxygen species and cyclooxygenase-2 mediated pathways in human hepatocellular carcinoma cell line. Eur J Pharmacol 649:74–83

    Article  CAS  PubMed  Google Scholar 

  • Ormond AB, Freeman HS (2013) Dye sensitizers for photodynamic therapy. Materials 6:817–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey VD (2010) Bioremediation of heavy metals by microalgae. In: Das MK (ed) Algal biotechnology. Daya Publishing House, Delhi, pp 287–296

    Google Scholar 

  • Papa S, Zazzeroni F, Pham CG, Bubici C, Franzoso G (2004) Linking JNK signaling to NF-κB: a key to survival. J Cell Sci 117:5197–5208

    Article  CAS  PubMed  Google Scholar 

  • Pardhasaradhi BVV, Mubarak AA, Leela KA, Reddanna P, Ashok K (2003) Phycocyanin mediated apoptosis in AK-5 tumor cells involves down regulation of Bcl-2 and generation of ROS. Mol Cancer Ther 2:1165–1170

    CAS  PubMed  Google Scholar 

  • Qureshi MA, Garlich JD, Kidd MT (1996) Dietary Spirulina platensis enhances humoral and cell-mediated immune functions in chickens. Immunopharmacol Immunotoxicol 18:465–476

    Article  CAS  PubMed  Google Scholar 

  • von Rahden BHA, Stein HJ, Pühringer F et al (2005) Coexpression of cyclooxygenases (COX-1, COX-2) and vascular endothelial growth factors (VEGF-A, VEGF-C) in esophageal adenocarcinoma. Cancer Res 65:5038–5044

    Article  Google Scholar 

  • Reddy CM, Bhat VB, Kiranmai G, Reddy MN, Reddanna P, Madyastha KM (2000) Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem Biophys Res Commun 277:599–603

    Article  CAS  PubMed  Google Scholar 

  • Reddy MC, Subhashini J, Mahipal SV, Bhat VB, Srinivas Reddy P, Kiranmai G, Madyastha KM, Reddanna P (2003) C-phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochem Biophys Res Commun 304:385–392

    Article  CAS  PubMed  Google Scholar 

  • Remirez D, Fernandez V, Tapia G, Gonzalez R, Videla LA (2002a) Influence of C-phycocyanin on hepatocellular parameters related to liver oxidative stress and Kupffer cell functioning. Inflamm Res 51:351–356

    Article  CAS  PubMed  Google Scholar 

  • Remirez D, Ledón N, González R (2002b) Role of histamine in the inhibitory effects of phycocyanin in experimental models of allergic inflammatory response. Mediat Inflamm 11:81–85

    Article  CAS  Google Scholar 

  • Richa, Kannaujiya VK, Kesheri M, Singh G, Sinha RP (2011) Biotechnological potentials of phycobiliproteins. Int J Pharma Bio Sci 2:B446–454

    Google Scholar 

  • Rimbau V, Camins A, Romay C, Gonzalez R, Pallás M (1999) Protective effects of C-phycocyanin against kainic acid induced neuronal damage in rat hippocampus. Neurosci Lett 276:75–78

    Article  CAS  PubMed  Google Scholar 

  • Riss J, Décordé K, Sutra T et al (2007) Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agric Food Chem 55:7962–7967

    Article  CAS  PubMed  Google Scholar 

  • Romay C, Ledon N, Gonzalez R (1999) Phycocyanin extract reduces leukotriene B4 levels in arachidonic acid-induced mouse ear inflammation test. J Pharm Pharmacol 51:641–642

    Article  CAS  PubMed  Google Scholar 

  • Romay CH, Gonzalez R, Ledon N et al (2003) C-phycocyanin a biliprotein with antioxidant, antinflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216

    Google Scholar 

  • Roshal M, Zhu Y, Planelles V (2001) Apoptosis in AIDS. Apoptosis 6:103–116

    Article  CAS  PubMed  Google Scholar 

  • Roy KR, Arunasree KM, Reddy NP, Dheeraj B, Reddy GV, Reddanna P (2007) Alteration of mitochondrial membrane potential by Spirulina platensis C-phycocyanin induces apoptosis in the doxorubicin resistant human hepato cellular carcinoma cell line HepG2. Biotechnol Appl Biochem 47:159–167

    Article  CAS  PubMed  Google Scholar 

  • Saini MK, Sanyal SN (2012) PTEN regulates apoptotic cell death through PI3-K/Akt/GSK3 signaling pathway in DMH induced early colon carcinogenesis in rat. Exp Mol Pathol 93:135–146

    Article  CAS  PubMed  Google Scholar 

  • Saini MK, Sanyal SN (2014a) Targeting angiogenic pathway for chemoprevention of experimental colon cancer using C-phycocyanin as cyclooxygenase-2 inhibitor. Biochem Cell Biol 92:206–218

    Article  CAS  PubMed  Google Scholar 

  • Saini MK, Sanyal SN (2014b) Piroxicam and c-phycocyanin prevent colon carcinogenesis by inhibition of membrane fluidity and canonical Wnt/-catenin signaling while up-regulating ligand dependent transcription factor PPAR. Biomed Pharmacother 68:537–550

    Article  CAS  PubMed  Google Scholar 

  • Saini MK, Sanyal SN (2015) Cell cycle regulation and apoptotic cell death in experimental colon carcinogenesis: intervening with cyclooxygenase-2 inhibitors. Nutr Cancer Int J 67:620–636

    Article  CAS  Google Scholar 

  • Saini MK, Sanyal SN, Vaiphei K (2012) Piroxicam and C-phycocyanin mediated apoptosis in 1,2-dimethylhydrazine dihydrochloride induced colon carcinogenesis: exploring the mitochondrial pathway. Nutr Cancer 64:409–418

    Article  CAS  PubMed  Google Scholar 

  • Saini MK, Vaish V, Sanyal SN (2013) Role of cytokines and Jak3/Stat3 signaling in the 1,2-dimethylhydrazine dihydrochloride-induced rat model of colon carcinogenesis: early target in the anticancer strategy. Eur J Cancer Prev 22:215–228

    Article  CAS  PubMed  Google Scholar 

  • Schlottmann S, Buback F, Stahl B, Meierhenrich R, Walter P et al (2008) Prolonged classical NF-κB activation prevents autophagy upon E. coli stimulation in vitro: a potential resolving mechanism of inflammation. Mediat Inflamm 2008:725854

    Article  CAS  Google Scholar 

  • Schwartz J, Shklar G, Reid S, Trickler D (1988) Prevention of experimental oral cancer by extracts of Spirulina-Dunaliella algae. Nutr Cancer 11:127–134

    Article  CAS  PubMed  Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Physiol 20:113–136

    Google Scholar 

  • Shih C-M, Cheng S-N, Wong C-S, Kuo Y-L, Chou T-C (2009) Antiinflammatory and antihyperalgesic activity of Cphycocyanin. Anesth Analg 108:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Stuart L, Hughes J (2002) Apoptosis and autoimmunity. Nephrol Dial Transplant 17:697–700

    Article  PubMed  Google Scholar 

  • Subhashini J, Mahipal SV, Reddy MC et al (2004) Molecular mechanisms in C-phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol 68:453–462

    Article  CAS  PubMed  Google Scholar 

  • Sun GY, Liang H, Xu QY (2010) Study on antitumor activity of phycocyanin and its antioxidant function. Prog Modern Biomed 10:243–245

    CAS  Google Scholar 

  • Szabo C, Thiemermann C (1995) Regulation of the expression of the inducible isoform of nitric oxide synthase. Adv Pharmacol 34:113–153

    Article  CAS  PubMed  Google Scholar 

  • Tabriz HM, Mirzaalizadeh M, Gooran S, Niki F, Jabri M (2016) COX-2 expression in renal cell carcinoma and correlations with tumor grade, stage and patient prognosis. Asian Pac J Cancer Prev 17:535–538

    Article  PubMed  Google Scholar 

  • Tantirapan P, Suwanwong Y (2014) Anti-proliferative effects of C-phycocyanin on a human leukemic cell line and induction of apoptosis via the PI3K/AKT pathway. J Chem Pharm Res 6:1295–1301

    Google Scholar 

  • Tao K-X, Zhang N, Wang G-B, Wu X-B (2006) Effects of meloxicam on vascular endothelial growth factor and angiopoietin-2 expression in colon carcinoma cell line HT-29. World Chin J Dig 14:1277–1282

    CAS  Google Scholar 

  • Trocoli A, Djavaheri-Mergny M (2011) The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am J Cancer Res 1:629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, Willoughby DA (1994) Inducible isoforms of cyclooxygenase and nitric oxide synthase in inflammation. Proc Nat Acad Sci USA 91:2046–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wainwright M (2004) Photodynamic therapy-from dyestuffs to high-tech clinical practice. Rev Prog Color Relat Top 34:95–109

    Article  CAS  Google Scholar 

  • Wang H, Liu Y, Gao X, Carter CL, Liu Z-R (2007) The recombinant β subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis. Cancer Lett 247:150–158

    Article  CAS  PubMed  Google Scholar 

  • Wang XQ, Deng W, Yang JF, Mao YC, Shi ZM (2012) Isolation and purification and cytotoxic activity of enzymatic hydrolysis peptide of phycocyanin. Food Sci 1:136–140

    Google Scholar 

  • Waskewich C, Blumenthal RD, Li H, Stein R, Goldenberg DM, Burton J (2002) Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of COX-2-negative hematopoietic and epithelial cell lines. Cancer Res 62:2029–2033

    CAS  PubMed  Google Scholar 

  • Wu L-C, Lin Y-Y, Yang S-Y, Weng Y-T, Tsai Y-T (2011) Antimelanogenic effect of c-phycocyanin through modulation of tyrosinase expression by upregulation of ERK and downregulation of p38 MAPK signaling pathways. J Biomed Sci 18:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi E-Y, Kim Y-J (2012) Betaine inhibits in vitro and in vivo angiogenesis through suppression of the NF-κB and Akt signaling pathways. Int J Oncol 41:879–1885

    Google Scholar 

  • Ying J, Pan RW, Wang MF et al (2015) Effects of phycocyanin on apoptosis of human laryngeal cancer HEP-2 cells. Chin J Pathophysiol 7:1189–1196

    Google Scholar 

  • Yong W, Qian F, Qian KX, Dong Q (2001) Anticancer activity of phycocyanin. J Zhejiang Uni (Eng Sci) 35:672–675

    Google Scholar 

  • Zhang CW, Yin ZM, Ou YPK (1995) Exploitation and utilization of phycobiliprotein. Chin J Mar Drugs 3:52–53

    Google Scholar 

  • Zhang X, Li JY, Gong XG (2010) Isolation of C-PC subunits from Spirulina platensis and inhibitory effect on SPC-A-1 cell line. J Zhej Uni 37:319–323

    Google Scholar 

  • Zheng J, Inoguchi T, Sasaki S et al (2013) Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. Am J Physiol-Regul Integr Comp Physiol 304:110–120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kannaujiya, V.K., Sundaram, S., Sinha, R.P. (2017). Role in Therapeutic Sciences. In: Phycobiliproteins: Recent Developments and Future Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-6460-9_9

Download citation

Publish with us

Policies and ethics