Skip to main content

Microwave Heating

  • Chapter
  • First Online:
Microwave Chemical and Materials Processing

Abstract

Microwave heating is a characteristic heating phenomenon that cannot be imitated by other heating methods; it can lead to internal heating, selective heating, formation of hotspots, local heating, superheating, and nonuniform heating—the penetration depth of microwaves is discussed. As well, a comparison is made in the use of microwaves with regard to heating efficiency, temperature control, environmental impact, low heat conduction sample, specimen geometry, and location of heat with other heat sources (electric furnace, gas, steam, high-frequency, and infrared). If microwaves are used effectively, innovative heating can be executed by using microwaves. The chapter describes microwave heating mechanisms and microwave behavior toward liquids and solids, together with the characteristics of microwave heating against other heat sources and microwave proprietary heating phenomena based on specific cases. The coffee break talks about the engineering and style of microwave ovens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://en.wikipedia.org/wiki/Microwave

  2. J.R. Goldsmith, Epidemiologic evidence relevant to radar (microwave) effects. Environ. Health Perspect. 105(Suppl. 6), 1579–1587 (1997)

    Google Scholar 

  3. S. Smiles, The Life of George Stephenson and of his son Robert Stephenson (Harper & Brothers, New York, 1868), p. 321. (https://commons.wikimedia.org/w/index.php?curid=31589133)

  4. Agilent, Basics of Measuring the Dielectric Properties of Materials, Application Note (Agilent Technologies, Inc. 2006). (http://academy.cba.mit.edu/classes/input_devices/meas.pdf)

  5. T. Sumi, R. Dillert, S. Horikoshi, Novel microwave thermodynamic model for alcohol with clustering structure in nonpolar solution. J. Phys. Chem. B 119, 14479–14485 (2015)

    Article  CAS  Google Scholar 

  6. S. Horikoshi, N. Shinohara, H. Takizawa, J. Fukushima, Microwave Chemistry (Sankyo Publishing Co. Ltd., 2013)

    Google Scholar 

  7. K.D. Raner, C.R. Strauss, R.W. Trainor, J.S. Thorn, A new microwave reactor for batchwise organic synthesis. J. Org. Chem. 60, 2456–2460 (1995)

    Article  CAS  Google Scholar 

  8. H. Takizawa, A. Hagiya, T. Aoyagi, Y. Hayashi, Preparation of mesoscopic TiO2–SnO2 composite grains by spinodal decomposition under 28 GHz microwave irradiation. Chem. Lett. 37, 714–715 (2008)

    Article  CAS  Google Scholar 

  9. Y. Suttisawat, H. Sakai, M. Abe, P. Rangsunvigit, S. Horikoshi, Microwave effect in the dehydrogenation of tetralin and decalin with a fixed-bed reactor. Intern. J. Hydrogen Energy 37, 3242–3250 (2012)

    Article  CAS  Google Scholar 

  10. S. Horikoshi, A. Osawa, M. Abe, N. Serpone, On the generation of hotspots by microwave electric and magnetic fields and their impact on a microwave-assisted heterogeneous reaction in the presence of metallic Pd nanoparticles on an activated carbon support. J. Phys. Chem. C 115, 23030–23035 (2011)

    Article  CAS  Google Scholar 

  11. http://en.wikipedia.org/wiki/Microwave_chemistry

  12. S. Zhang, D.O. Hayward, D.M.P. Mingos, Apparent equilibrium shifts and Hotspot formation for catalytic reactions induced by microwave dielectric heating. Chem. Commun. 975–976 (1999)

    Google Scholar 

  13. Y. Tsukahara, A. Higashi, T. Yamauchi, T. Nakamura, N. Yasuda, A. Baba, Y. Wada, In situ observation of nonequilibrium local heating as an origin of special effect of microwave on chemistry. J. Phys. Chem. C 114, 8965–8970 (2010)

    Article  CAS  Google Scholar 

  14. B. Gutmann, A.M. Schwan, B. Reichart, C. Gspan, F. Hofer, C.O. Kappe, Activation and deactivation of a chemical transformation by an electromagnetic field: evidence for specific microwave effects in the formation of grignard reagents. Angew. Chem. Int. Ed. 50, 4636–4640 (2011)

    Article  Google Scholar 

  15. J.A. Menéndez, E.J. Juárez-Pérez, E. Ruisánchez, J.M. Bermúdez, A. Arenillas, Ball lightning plasma and plasma arc formation during the microwave heating of carbons. Carbon 49, 346–349 (2011)

    Article  Google Scholar 

  16. S. Horikoshi, A. Osawa, S. Sakamoto, N. Serpone, Control of microwave-generated hotspots. Part V. Mechanisms of hotspot generation and aggregation of catalyst in a microwave-assisted reaction in toluene catalyzed by Pd-loaded AC particulates, Appl. Catal. A: Gen. 460–461, 52–60 (2013)

    Google Scholar 

  17. G. Cravotto, M. Beggiato, A. Penoni, G. Palmisano, S. Tollari, J.-M. Lévêques, W. Bonrath, High-intensity ultrasound and microwave, alone or combined, promote Pd/C-catalyzed aryl–aryl couplings. Tetrahedron Lett. 6, 2267–2271 (2005)

    Article  Google Scholar 

  18. J.M. McMahon, S. Li, L.K. Ausman, G.C. Schatz, Modeling the effect of small gaps in surface-enhanced Raman spectroscopy. J. Phys. Chem. C 116, 1627–1637 (2012)

    Article  CAS  Google Scholar 

  19. S. Horikoshi, Y. Suttisawat, A. Osawa, C. Takayama, X. Chen, S. Yang, H. Sakai, M. Abe, N. Serpone, Organic syntheses by microwave selective heating of novel metal/CMC catalysts—the Suzuki–Miyaura coupling reaction in toluene and the dehydrogenation of tetralin in solvent- free media. J. Catal. 289, 266–271 (2012)

    Article  CAS  Google Scholar 

  20. S. Horikoshi, A. Osawa, S. Sakamoto, and N. Serpone Control of microwave-generated Hotspots. Part IV. Control of Hotspots on a heterogeneous microwave-absorber catalyst surface by a hybrid internal/external heating method, Chem. Eng. Process. 69, 52–56 (2013)

    Google Scholar 

  21. S. Horikoshi, M. Kamata, T. Mitani, N. Serpone, Control of microwave-generated hotspots. 6. Generation of hotspots in dispersed catalyst particulates and factors that affect catalyzed organic syntheses in heterogeneous media. Ind. Eng. Chem. Res. 53, 14941–14947 (2014)

    Article  CAS  Google Scholar 

  22. S. Horikoshi, N. Serpone, in Microwaves in Organic Synthesis, ed by A. de la Hoz, A. Loupy, 3rd ed. (Wiley, Weinheim, 2012), pp. 377–423

    Google Scholar 

  23. S. Horikoshi, M. Kamata, T. Sumi, N. Serpone, Selective heating of Pd/AC catalyst in heterogeneous systems for the microwave-assisted continuous hydrogen evolution from organic hydrides: temperature distribution in the fixed-bed reactor. Inter J. Hydrogen Energ. 41, 12029–12037 (2016)

    Article  CAS  Google Scholar 

  24. A.C. Metaxas, R.J. Meredith, Industrial of Microwave Heating (Peter Peregrines, London, 1983)

    Google Scholar 

  25. E.T. Thostenson, T.-W. Chou, Microwave processing: fundamentals and applications. Composites A 30, 1055–1071 (1999)

    Article  Google Scholar 

  26. B. Meng, B.D.B. Klein, J.H. Booske, R.F. Cooper, Microwave absorption in insulating dielectric ionic crystals including the role of point defects. Phys Rev. B 53, 12777–12785 (1996)

    Article  CAS  Google Scholar 

  27. J.E. Eldridge, P.R. Staal, Far-infrared dispersive-reflection measurements on NaCl, compared with calculations based on cubic and quartic anharmonicity. I. Room temperature. Phys. Rev. B 16, 4608–4618 (1977)

    Article  CAS  Google Scholar 

  28. http://www.fda.gov/RadiationEmittingProducts/RadiationEmittingProductsandProcedures/HomeBusinessandEntertainment/ucm142506.htm

  29. J. Meyer, Zur Kenntnis des negative Druckes in Flüssigkeiten. Abhandl. Dent. Bunsen Ges. III(1) and 6, (1911)

    Google Scholar 

  30. A. Ferrari, J. Hunt, A. Stiegman, G.B. Dudley, Microwave-assisted superheating and/or microwave-specific superboiling (nucleation-limited boiling) of liquids occurs under certain conditions but is mitigated by stirring. Molecules 20, 21672–21680 (2015)

    Article  CAS  Google Scholar 

  31. D.R. Baghurs, D. Michael, P. Mingos, Superheating effects associated with microwave dielectric heating. Chem. Commun. 674–677 (1992)

    Google Scholar 

  32. F. Chemat, E. Esveld, Microwave super-heated boiling of organic liquids: Origin, effect and application. Chem. Eng. Technol. 24, 735–744 (2001)

    Article  CAS  Google Scholar 

  33. S. Horikoshi, S. Iida, M. Kajitani, S. Sato, N. Serpone, Chemical reactions with a novel 5.8-GHz microwave apparatus. 1. Characterization of properties of common solvents and application in a Diels-Alder organic synthesis. Org. Process Res. Dev. 12, 257–263 (2008)

    Article  CAS  Google Scholar 

  34. P. Klán, J. Literák, S. Relich, Molecular photochemical thermometers: investigation of microwave superheating effects by temperature dependent photochemical processes. J. Photochem. Photobiol. A 143, 49–57 (2001)

    Article  Google Scholar 

  35. V.G. Pol, Y. Langzam, A. Zaban, Application of microwave superheating for the synthesis of TiO2 rods. Langmuir 23, 11211–11216 (2007)

    Article  CAS  Google Scholar 

  36. https://museumvictoria.com.au/about/mv-blog/jun-2011/five-things-about-microwaves/

  37. C.R. Buffler, Microwave Cooking and Processing (Van Nostrand Reinhold, New York, 1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Horikoshi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horikoshi, S., Schiffmann, R.F., Fukushima, J., Serpone, N. (2018). Microwave Heating. In: Microwave Chemical and Materials Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-6466-1_4

Download citation

Publish with us

Policies and ethics