Skip to main content

Phytoremediation and Rhizoremediation: Uptake, Mobilization and Sequestration of Heavy Metals by Plants

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Microorganisms residing over the rhizosphere have the capability to catalyse metal uptake in a symbiotic relationship with the roots. This syntrophic relationship enhances the bioavailability of heavy metals and encourages the root adsorption capacity for vital in addition to non-essential metal. It also changes their chemical properties that ultimately have an effect on metal dissolution. Molecular level understanding of the physiological and evolutionary mechanism along with genetics and biochemistry principles underlying the uptake, transportation, translocation and storage of heavy metals (HMs) in model plant species thus allowing alteration to the HM stress can loan much to our comprehension of the fundamental segments of HM metabolism. A lucid understanding of molecular level changes is necessary for plant biotechnologist, regarding changes provoked in plants because of HM stress. It is also helpful to develop stress-resistant cultivars and species with superior phytoremediation capacity through cell and genetic engineering technologies. We hereby summarize the present understanding of HM uptake by plants and also provide a brief study related to their biochemical characteristics of take-up, transport and assortment plus injury and defence mechanism against HM. In this review chapter, we have also focused over the future prospect of research to enhance the discriminate perspective of the basic phytoremediation components specifically rhizoremediation of HMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Al-Agely A, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.) J Environ Qual 34:2181–2186

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Duarte AC, Pereira E, Umae S, Ahmad A, Khand NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants responses to toxic metals and metalloids–a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Anwar HM, Garcia-Sanchez A, Alam Tari Kul M, Majibur Rahman M (2008) Phytofiltration of water polluted with arsenic and heavy metals. Int J Environ Pollut 33:292–312

    Article  Google Scholar 

  • Astier J, Kulik A, Koen E, Besson-Bard A, Bourque S, Jeandroz S, Lamotte O, Wendehenne D (2012) Protein S-nitrosylation: what’s going on in plants? Free Radic Biol Med 53:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Atimanav G, Alok A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    Google Scholar 

  • Banuelos GS, Ajwa HA, Mackey LL, Wu C, Cook S, Akohoue S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Science 2:333–344

    Google Scholar 

  • Barlow R, Bryant N, Andersland J, Sahi S (2000) Lead hyperaccumulation by Sesbania Drummondii. In: Proceedings of the 2000 Conference on Hazardous Waste Research, pp 112–114

    Google Scholar 

  • Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH (2013) Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot 94:73–88

    Article  CAS  Google Scholar 

  • Baycu G (2002) Phytochelatin biosynthesis and cadmium detoxification. J Cell Mol Biol 1:45–55

    Google Scholar 

  • Begonia MT, Begonia GB, Ighoavodha M, Gilliard D (2005) Lead accumulation by Tall Fescue (Festuca arundinacea Schreb) grown on a lead-contaminated soil. Int J Environ Res Public Health 2:228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bhatia NP, Walsh KB, Baker AJM (2005) Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot 56:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Black H (1995) Absorbing possibilities: phytoremediation. Environ Health Perspect 103:1106–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 37:860–865

    Article  Google Scholar 

  • Bluskov S, Arocena JM (2005) Uptake, distribution, and speciation of chromium in Brassica juncea. Int J Phytoremediation 7:153–165

    Google Scholar 

  • Bluskov S, Arocena JM, Omotoso OO, Young JP (2005) Uptake, distribution, and speciation of chromium in Brassica juncea. Int J Phytoremediation 7:153–165

    Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1999) Distribution and volatilisation of organic compounds following uptake by hybrid poplar trees. Int J Phytoremediation 1:139–151

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJ (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C 60:190–198

    CAS  PubMed  Google Scholar 

  • Chen BD, Zhu YG, Smith FA (2006) Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere 62:1464–1473

    Article  CAS  PubMed  Google Scholar 

  • Cheng S (2003) Effects of heavy metals on plants and resistance mechanisms. Environ Sci Pollut Res Int 10:256–264

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    Article  CAS  PubMed  Google Scholar 

  • Cooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR (1999) Chelate-assisted phytoextraction of lead from contaminated soils. J Environ Qual 28:1709–1719

    Article  CAS  Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775

    Article  CAS  PubMed  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 13:35–47

    Article  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. MMG 445 Basic Biotechnol 3:1–5

    Google Scholar 

  • Dietz A, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy meal pollution and Human biotoxic effects. Int J Phy Sci 2:112–118

    Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhirofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci 93:5624–5628. https://doi.org/10.1073/pnas.93.11.5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eren E, Argüello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting P1B-ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:712–3723

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Freeman JL, Michael WP, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Michael WP, Nieman K, Salt DE (2005) Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense. Appl Environ Microbiol 12:8627–8633

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Rosa G, Videa JRP (2004) Use of Phytofiltration technologies in the removal of heavy metals: a review. Pure Appl Chem 76:801–813

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Article  Google Scholar 

  • Giasson P, Karam A, Jaouich A (2008) Arbuscular mycorrhizae and alleviation of soil stresses on plant growth. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 99–134

    Chapter  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Grcman H (2005) Phytoextraction of heavy metals from contaminated soil: expectations and limitations. Geophys Res Abstr 7:01117

    Google Scholar 

  • Grcman H, Vodnik D, Velikonja-Bolta S, Lestan D (2003) Ethylenediaminedisuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32:500–506

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific y-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Nat Acad Sci U S A 86:6838–6842

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Hammer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    Article  Google Scholar 

  • Hammer D, Keller C (2003) Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manag 19:144–149

    Article  Google Scholar 

  • Hanikenne M, Kramer U, Demoulin V, Baurain D (2005) A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol 137:428–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:63–471

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Bookum W, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Piyatida P, Teixeira JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012(2):1–37. https://doi.org/10.1155/2012/872875

    Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham DS (1997) Phyto-remediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Hussain SA, Palmer DH, Moon S, Rea DW (2004) Endocrine therapy and other targeted therapies for metastatic breast cancer. Expert Rev Anticancer Ther 4:1179–1195

    Article  CAS  PubMed  Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing YD, Zhen Li HE, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jozefczak M, Keunen E, Schat H, Bliek M, Hernandez LE, Carleer R, Remans T, Bohler S, Vangronsveld J, Cuypers A (2014) Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity. Plant Physiol Biochem 83:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kagi JHR (1991) Overview of metallothioneins. Methods Enzymol 205:613–626

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan R, Kulakow PA (2003) Soil plant microbe interactions in phytoremediation. In: Phytoremediation, Advances in biochemical engineering/biotechnology, vol 78. Springer, Berlin/Heidelberg, pp 51–74

    Chapter  Google Scholar 

  • Kashem MA, Singh BR (2002) The effect of fertilizer additions on the solubility and plant–availability of Cd, Ni and Zn in soil. Nutr Cycl Agroecosyst 62:287–296

    Article  CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–112

    Article  Google Scholar 

  • Kirkham MB (2000) EDTA-facilitated phytoremediation of soil with heavy metals from sewage sludge. Int J Phytoremediation 2:159–172

    Article  CAS  Google Scholar 

  • Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F (2012) Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 169:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Kupper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular Compartmentation of Ni in the hyperaccumulators Alyssum lesbiacum, A. bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals. A review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Over expression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 Contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liphadzi MS, Kirkham MB (2005) Phytoremediation of soil contaminated with heavy metals: a technology for rehabilitation of the environment. J S Afr Bot 71:24–37

    Article  CAS  Google Scholar 

  • Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progress and perspectives. J Zhejiang UniSci B 9:210–220

    Article  CAS  Google Scholar 

  • Madrid F, Liphadzi MS, Kirkham MB (2003) Heavy metal displacement in chelate-irrigated soil during phytoremediation. J Hydrol 272:107–119

    Article  CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Plants and heavy metals, pp 27–54. https://doi.org/10.1007/978-94-007-4441-7

    Chapter  Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CABI Publishing, Wallingford, pp 261–287

    Google Scholar 

  • Memon A, Aktoprakligil D, Ozdemir Z, Vertii A (2001) Heavy metal accumulation and detoxification mechanism in plants. Turk J Bot 25:111–121

    Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum. I. J Exp Bot 56:167–178

    Google Scholar 

  • Miller RR (1996) Phytoremediation, technology overview report, Ground-water remediation technologies analysis center, Pittsburgh, PA, USA web. https://clu-in.org/download/toolkit/phyto_o.pdf

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Global J Environ Res 4:135–150

    CAS  Google Scholar 

  • Nascimento CWA, Xing B (2006) Phytoexraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311

    Article  Google Scholar 

  • Nedkovska M, Atanassov AI (1998) Metallothionein genes and expression for heavy metal resistance. Biotechnology 12:11–16

    Google Scholar 

  • Nguyen VNT, Moon S, Jung K-H (2014) Genome-wide expression analysis of rice ABC transporter family across spatio-temporal samples and in response to abiotic stresses. J Plant Physiol 171:1276–1288

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Ortiz DF, Theresa R, McCue KF, Ow DW (1995) Transport of metal -binding peptides by HMT1, A Fission yeast ABC-type Vacuolar Membrane Protein. J Biol Chem 270(9):4721–4728

    Google Scholar 

  • Ovečka M, Takáč T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86

    Article  PubMed  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126

    Google Scholar 

  • Panda SK (2003) Heavy metal toxicity induces oxidative stress in a moss Taxithellium sp. Curr Sci 84:631–633

    CAS  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eid D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persans MW, Yan X, Patnoe JMML, Krämer U, Salt DE (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). Plant Physiol 121:1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Pivetz BE (2001) Phytoremediation of contaminated soil and ground water at hazardous sites. Ground water issue, EPA/540/S-01/500

    Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV, Freitas HM (2003) Metal hyperaccumulation in plants–biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Article  Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int J Environ Res 5:961–970

    CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore producing bacteria for improving heavy metal phytoextraction. Trends Microbiol 28:142–149

    CAS  Google Scholar 

  • Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. J Biochem 295:1–10

    Article  CAS  Google Scholar 

  • Robinson B, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T (2006) Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc Res 80:221–234

    Google Scholar 

  • Ross S (1994) Toxic metals in soil-plant systems. Wiley, Chichester. ISBN: 978-0-471-94279-5

    Google Scholar 

  • Ruby MV, Schoff R, Battin W, Goldade M, Post G, Harnois M, Mosby DE, Casteel SW, Berti W, Carpenter M, Edwards D, Cargin D, Chappel W (1999) Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 32:3697–3705

    Article  CAS  Google Scholar 

  • Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots evidence for a Cd2+/H+ antiport acivity. J Biol Chem 268:12297–12302

    CAS  PubMed  Google Scholar 

  • Sawidis T (2008) Effect of cadmium on pollen germination and tube growth in Lilium longiflorum and Nicotiana tabacum. Protoplasma 233:95–106

    Article  CAS  PubMed  Google Scholar 

  • Sewelam N, Jaspert N, Van Der Kelen K, Tognetti VB, Schmitz J, Frerigmann H, Stahl E, Zeier J, Van Breusegem F, Maurino VG (2014) Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Mol Plant 7:1191–1210

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    Article  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Stanhope KG, Young SD, Hutchinson JJ, Kamath R (2000) Use of isotopic dilution techniques to assess the mobilization of nonliable Cd by chelating agents in phytoremediation. Environ Sci Technol 34:4123–4127

    Article  CAS  Google Scholar 

  • Ste’phane M, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat JF, Lebrun M, Czernic P (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine–nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122

    Article  CAS  Google Scholar 

  • Sudhakar G, Jyothi B, Venkateshwar V (1991) Metal pollution and its impact on algae in flowing waters in India. Arch Environ Contam Toxicol 21:556–266

    Article  CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triplett EW (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186:2938

    Article  Google Scholar 

  • Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd Translocation and Identification of the Cd Form in Xylem Sap of the Cd-Hyperaccumulator Arabidopsis halleri. Plant Cell Physiol 49:540–548

    Article  CAS  PubMed  Google Scholar 

  • US DOE (1994) Summary report of a workshop on phytoremediation research needs. In: Benemann JR, Rabson R, Travares J, Levine R (eds), Santa Rosa, CA July 24–26, 1994. Report DOE/EM-0224, US DOE, December 1994, Washington, DC

    Google Scholar 

  • USEPA (1999) Report on bioavailability of chemical wastes with respect to the potential for soil remediation. T28006: QT-DC-99-003260

    Google Scholar 

  • USEPA (2000) Introduction to phytoremediation. Cincinnati OH, US EPA: 104

    Google Scholar 

  • Variyar PS, Banerjee A, Akkarakaran JJ, Suprasanna P (2014) Role of glucosinolates in plant stress tolerance. In: Emerging technologies and management of crop stress tolerance. Academic, San Diego, pp 271–291

    Chapter  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Sundaram MV, Rea PA (2005) CeHMT-1, a putative phytochelatin transporter, is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 280:23684–23690

    Article  CAS  PubMed  Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10:268–292

    Article  Google Scholar 

  • Visioli G, Marmiroli N (2012) The proteomics of heavy metal hyperaccumulation by plants. J Proteome 79:133–145

    Article  CAS  Google Scholar 

  • Wase J, Forster C (1997) Biosorbents for metal ions. Taylor and Francis Ltd, London

    Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: Plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:1–7

    Article  CAS  Google Scholar 

  • Wong JWC, Wong WWY, Wei Z, Jagadeesan H (2004) Alkaline biosolids and EDTA for phytoremediation of an acidic loamy soil spiked with cadmium. Sci Total Environ 24:235–246

    Article  CAS  Google Scholar 

  • Wu J, Hsu FC, Cunningham SD (1999) Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environ Sci Technol 33:1898–1904

    Article  CAS  Google Scholar 

  • Yan JW, Zhang LY (2013) Molecular cloning and characterization of a Brassica juncea yellow stripe-like gene, BjYSL7, whose overexpression increases heavy metal tolerance of tobacco. Plant Cell Rep 32(5):651–662

    Article  CAS  Google Scholar 

  • Yong SW, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I, Lee Y (2004) A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135:1027–1039

    Article  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Chen D, Ren Y, Zhang X, Zhao J (2008) Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol 146:1637–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants–a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhu YG, Kneer R, Tong YP (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    PubMed  Google Scholar 

  • Zhuang P, Yang Q, Wang H, Shu W (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the University Grant Commission and Basic Scientific Research, New Delhi, for the financial grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narsi R. Bishnoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S.S., Kadier, A., Malyan, S.K., Ahmad, A., Bishnoi, N.R. (2017). Phytoremediation and Rhizoremediation: Uptake, Mobilization and Sequestration of Heavy Metals by Plants. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_15

Download citation

Publish with us

Policies and ethics