Skip to main content

Micro-electrochemical Approach for Corrosion Study

  • Chapter
  • First Online:
Electrochemistry for Corrosion Fundamentals

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

Structure of an interphase formed between a practical material and its surrounding environment is not uniform or homogeneous not only in normal direction to the interface but also in horizontal direction to the interface. This is due to heterogeneity of the material’s crystallographic structure such as crystallographic orientation of single grains, grain boundaries, and inclusions, presence of reaction product on the surface, and heterogeneous effects from the environment. Heterogeneous structure of the interphase leads to heterogeneous interfacial reaction and/or localized corrosion. For example, pitting corrosion occurs on stainless steel in aggressive anion-containing solution owing to local depassivation at the weak part of passive surface. Micro-electrochemical methods are effective to investigate heterogeneous interfacial structures and locally corroding surfaces even in corrosive environments. In this chapter, several micro-electrochemical methods developed and applied in the corrosion research field are introduced. Features of the methods in the application are described as well as the principle and experimental setup of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wightman RM, Wipf DO (1989) Electroanalytical chemistry. In: Bard AJ (ed) vol15. Marcel Dekker, New York, p 267

    Google Scholar 

  2. Baer CD, Stone NJ, Sweigart DA (1988) Fabrication of platinum-disc ultramicroelectrodes. Anal Chem 60:188–191

    Article  CAS  Google Scholar 

  3. Heinze J (1993) Ultramicroelectrodes in electrochemistry. Angew Chem Int Ed Engl 32:1268–1288

    Article  Google Scholar 

  4. Bard AJ, Mirkin MV (2001) Scanning electrochemical microscopy. Marcel Dekker, New York

    Book  Google Scholar 

  5. Bard AJ, Mirkin MV (2012) Scanning electrochemical microscopy, 2nd edn. CRC Press, New York

    Book  Google Scholar 

  6. Saito Y (1968) A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev Polarogr 15:177–187

    Article  CAS  Google Scholar 

  7. Shoup D, Szabo A (1984) Influence of insulation geometry on the current at microdisk electrodes. J Electroanal Chem 160:27–31

    Article  CAS  Google Scholar 

  8. Cottrell FG (1903) The cut off current in galvanic polarization, considered as a diffusion problem. Z Phys Chem 42:385–431

    Google Scholar 

  9. Fushimi K, Miyamoto K, Konno H (2010) Anisotropic corrosion of iron in pH 1 sulphuric acid solution. Electrochim Acta 55:7322–7327

    Article  CAS  Google Scholar 

  10. Kudelka S, Michaelis A, Schultze JW (1995) Electrochemical characterization of oxide layers on single grains of a polycrystalline Ti-sample. Ber Bunsenges Phys Chem 99:1020–1027

    Article  CAS  Google Scholar 

  11. Schultze JW, Pilaski M, Lohrengel MM, König U (2002) Single crystal experiments on grains of polycrystalline materials: oxide formation on Zr and Ti. Faraday Discuss 121:211–227

    Article  CAS  Google Scholar 

  12. Schweinsberg M, Michaelis A, Schultze JW (1997) Growth of oriented anodic films on single grains of Zr: structure and epitaxy from anisotropy-micro-ellipsometry. Electrochim Acta 42:3303–3310

    Article  CAS  Google Scholar 

  13. Chiba A, Muto I, Sugawara Y, Hara N (2013) Pit initiation mechanism at MnS inclusions in stainless steel: synergistic effect of elemental sulfur and chloride ions. J Electrochem Soc 160:C511–C520

    Article  CAS  Google Scholar 

  14. Fushimi K, Kurauchi K, Yamamoto Y, Nakanishi T, Hasegawa Y, Ohtsuka T (2014) Growth and degradation of an anodic oxide film on titanium in sulphuric acid observed by ellipso-microscopy. Electrochim Acta 144:56–63

    Article  CAS  Google Scholar 

  15. Suter T, Böhni H (1997) A new microelectrochemical method to study pit initiation on stainless steels. Electrochim Acta 42:3275–3280

    Article  CAS  Google Scholar 

  16. Suter T, Böhni H (1998) Microelectrodes for studies of localized corrosion processes. Electrochim Acta 43:2843–2849

    Article  CAS  Google Scholar 

  17. Lohrengel MM (1997) Interface and volume effects in biological cells and electrochemical microcells. Electrochim Acta 42:3265–3271

    Article  CAS  Google Scholar 

  18. Hassel AW, Lohrengel MM (1997) The scanning droplet cell and its application to structured nanometer oxide films on aluminium. Electrochim Acta 42:3327–3333

    Article  CAS  Google Scholar 

  19. Schneider M, Schroth S, Schilm J, Michaelis A (2009) Micro-EIS of anodic thin oxide films on titanium for capacitor applications. Electrochim Acta 54:2663–2671

    Article  CAS  Google Scholar 

  20. Fushimi K, Takabatake Y, Nakanishi T, Hasegawa Y (2013) Microelectrode techniques for corrosion research of iron. Electrochim Acta 113:741–747

    Article  CAS  Google Scholar 

  21. Lohrengel MM, Klüppel I, Rosenkranz C, Bettermann H, Schultze JW (2003) Microscopic investigation of electrochemical machining of Fe in NaNO3. Electrochim Acta 48:3203–3211

    Article  CAS  Google Scholar 

  22. Sakairi M, Sato F, Goto Y, Fushimi K, Kikuchi T, Takahashi H (2008) Development of novel microstructure fabrication method with coaxial dual capillary solution flow type droplet cells and electrochemical deposition. Electrochim Acta 54:616–622

    Article  CAS  Google Scholar 

  23. Fushimi K, Yamamoto S, Konno H, Habazaki H (2009) Limiting current in a flowing-electrode-type droplet cell. ChemPhysChem 10:420–426

    Article  CAS  Google Scholar 

  24. Kollender JP, Voith M, Schneiderbauer S, Mardare AI, Hassel AW (2015) Highly customizable scanning droplet cell microscopes using 3D-printing. J Electroanal Chem 740:53–60

    Article  CAS  Google Scholar 

  25. Homazava N, Ulrich A, Trottmann M, Krähenbühi U (2007) Micro-capillary system coupled to ICP-MS as a novel technique for investigation of micro-corrosion processes. J Anal At Spectrom 22:1122–1130

    Article  CAS  Google Scholar 

  26. Serdechnova M, Volovitch P, Brisset F, Ogle K (2013) On the cathodic dissolution of Al and Al alloys. Electrochim Acta 124:9–16

    Article  Google Scholar 

  27. Fushimi K, Yanagisawa K, Nakanishi T, Hasegawa Y, Kawano T, Kimura M (2013) Microelectrochemistry of dual-phase steel corroding in 0.1 M sulfuric acid. Electrochim Acta 114:83–87

    Article  CAS  Google Scholar 

  28. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface study by scanning tunneling microscopy. Phys Rev Lett 49:57–61

    Article  Google Scholar 

  29. Binnig G, Quate CF, Gerber C (1986) Atomic force microscopy. Phys Rev Lett 56:930–933

    Article  CAS  Google Scholar 

  30. Cruickshank BJ, Gewirth AA, Rynders RM, Alkire RC (1992) In situ observation of shape evolution during copper dissolution using atomic force microscopy. J Electrochem Soc 139:2829–2832

    Article  CAS  Google Scholar 

  31. Ikemiya N, Kubo T, Hara S (1995) In-situ observation of oxide film formation on Cu(111) and Cu(110) surfaces under aqueous alkaline solutions. Surf Sci 323:81–90

    Article  CAS  Google Scholar 

  32. Vignal V, Olive JM, Desjardins D (1999) Effect of molybdenum on passivity of stainless steels in chloride media using ex situ near field microscopy observation. Corros Sci 41:869–884

    Article  CAS  Google Scholar 

  33. Isaacs HS, Vyas B (1981) Scanning reference electrode techniques in localized corrosion. In: Mansfeld F, Bertocci U (eds) Electrochemical corrosion testing, STP28024. ASTM International, West Conshohocken, PA, pp 3–33

    Chapter  Google Scholar 

  34. Bates SJ, Gosden SR, Sargant DA (1989) Design and development of scanning reference electrode technique for investigation of pitting corrosion in FV-448 gas-turbine disk steel. Mater Sci Technol 5:356–361

    Article  CAS  Google Scholar 

  35. Voruganti VS, Luft HB, DeGeer D, Bradford SA (1991) Scanning reference electrode technique fort he investigation of preferential corrosion of weldments in offshore application. Corrosion 47:343–351

    Article  CAS  Google Scholar 

  36. Trethewey KR, Sargeant DA, Marsh DJ, Tamimi AA (1993) Application of the scanning reference electrode technique to localized corrosion. Corros Sci 35:127–129

    Article  CAS  Google Scholar 

  37. Isaacs HS, Kenig MW (1980) Determination of surface inhomogeneities using a scanningprobe impedance technique. Corrosion 36:269–274

    Article  CAS  Google Scholar 

  38. Lillard RS, Moran PJ, Isaacs HS (1992) Novel method for generating quantitative local electrochemical impedance spectroscopy. J Electrochem Soc 139:1007–1012

    Article  CAS  Google Scholar 

  39. Zou F, Thierry D, Isaacs HS (1997) A high-resolution probe for localized electrochemical impedance spectroscopy measurements. J Electrochem Soc 144:1957–1965

    Article  CAS  Google Scholar 

  40. Isaacs HS (1987) The use of the scanning vibrating electrode technique for detecting defects in ion vapor-deposited aluminum on steel. Corrosion 40:594–598

    Article  Google Scholar 

  41. Isaacs HS (1988) The measurement of the galvanic corrosion of soldered copper using the scanning vibration electrode technique. Corros Sci 28:547–558

    Article  CAS  Google Scholar 

  42. Engstrom RC, Weber M, Wunder DJ, Burgess R, Winquist S (1986) Measurements within the diffusion layer using a microelectrode probe. Anal Chem 58:844–848

    Article  CAS  Google Scholar 

  43. Bard AJ, Fan FRF, Kwak J, Lev O (1989) Scanning electrochemical microscopy- introduction and principles. Anal Chem 61:132–138

    Article  CAS  Google Scholar 

  44. Bard AJ, Fan FRF, Pierce DT, Unwin PR, Wipf DO, Zhou F (1991) Chemical imaging of surfaces with the scanning electrochemical microscope. Science 254:68–74

    Article  CAS  Google Scholar 

  45. Tanabe H, Togashi K, Misawa T, Mudali UK (1998) In situ pH measurements during localized corrosion of type 316L steel using scanning electrochemical microscopy. J Mater Sci Lett 17:551–553

    Article  CAS  Google Scholar 

  46. Lin CJ, Du RG, Nguyen T (2000) In-situ imaging of chloride ions at the metal/ solution interface by scanning combination microelectrodes. Corrosion 56:41–47

    Article  CAS  Google Scholar 

  47. Casillas N, Charlebois SJ, Smyrl WH, White HS (1993) Scanning electrochemical microscopy of precursor sites for pitting corrosion on titanium. J Electrochem Soc 140:L142–L145

    Article  CAS  Google Scholar 

  48. Zhu Y, Williams DE (1997) Scanning electrochemical microscopic observation of a precursor state to pitting corrosion of stainless steel. J Electrochem Soc 144:L43–L45

    Article  CAS  Google Scholar 

  49. Souto RM, González-Garcia Y, González S, Burstein GT (2004) Damage to paint coatings caused by electrolyte immersion as observed in situ by scanning electrochemical microscopy. Corros Sci 46:2621–2628

    Article  CAS  Google Scholar 

  50. Fushimi K, Seo M (2001) An SECM observation of dissolution distribution of ferrous or ferric ion from a polycrystalline iron electrode. Electrochim Acta 46:121–127

    Article  Google Scholar 

  51. Fushimi K, Azumi K, Seo M (1999) Evaluation of heterogeneity in thickness of passive films on pure iron by scanning electrochemical microscopy. ISIJ Int 39:346–351

    Article  CAS  Google Scholar 

  52. Fushimi K, Okawa T, Azumi K, Seo M (2000) Heterogeneous growth of anodic oxide film on a polycrystalline titanium electrode observed with a scanning electrochemical microscope. J Electrochem Soc 147:524–529

    Article  CAS  Google Scholar 

  53. Lill KA, Fushimi K, Seo M, Hassel AW (2008) Reactivity imaging of a passive ferritic FeAlCr steel. J Appl Electrochem 38:1339–1345

    Article  CAS  Google Scholar 

  54. Zhu R, Nowierski C, Noel JJ, Shoesmith DW (2007) Insights into grain structures and their reactivity on grade-2 Ti alloy surfaces by scanning electrochemical microscopy. Chem Mater 19:2533–2543

    Article  CAS  Google Scholar 

  55. Still JW, Wipf DO (1997) Breakdown of the iron passive layer by use of the scanning electrochemical microscope. J Electrochem Soc 144:2657–2665

    Article  CAS  Google Scholar 

  56. Wipf DO (1994) Initiation and study of localized corrosion by scanning electrochemical microscopy. Colloid Surf A 93:251–261

    Article  CAS  Google Scholar 

  57. Fushimi K, Azumi K, Seo M (2000) Use of liquid-phase ion gun for local breakdown of the passive film on iron. J Electrochem Soc 147:552–557

    Article  CAS  Google Scholar 

  58. Fushimi K, Seo M (2001) Initiation of a local breakdown of passive film on iron due to chloride ions generated by a liquid-phase ion gun. J Electrochem Soc 148:B450–B456

    Article  CAS  Google Scholar 

  59. Aouina N, Balbaud-Célérier F, Huet F et al (2011) Single pit initiation on 316L austenitic stainless steel using scanning electrochemical microscopy. Electrochim Acta 56:8589–8596

    Article  CAS  Google Scholar 

  60. Lee JS, Fushimi K, Kitagawa Y, Nakanishi T, Hasegawa Y (2015) Development of a liquid-phase ion gun and its application for sulfidation of silver surface. J Electrochem Soc 162:C115–C120

    Article  CAS  Google Scholar 

  61. Lee JS, Kawano T, Ishii T, Kitagawa Y, Nakanishi T, Hasegawa Y, Fushimi K (2017) Initiation of localized corrosion of ferritic stainless steels by using the liquid-phase ion gun technique. J Electrochem Soc 164:C1–C7

    Article  CAS  Google Scholar 

  62. James PI, Garflas-Mesias LF, Moyer PJ, Smyrl WH (1998) Scanning electrochemical microscopy with simultaneous independent topography. J Electrochem Soc 145:L64–L66

    Article  CAS  Google Scholar 

  63. Katemann BB, Schulte A, Schumann W (2003) Constant-distance mode scanning electrochemical microscopy (SECM)- part 1: adaptation of a non-optical shear-force-based positioning mode for SECM tips. Chem Eur J 9:2025–2033

    Article  CAS  Google Scholar 

  64. Macpherson JV, Unwin PR (2000) Combined scanning electrochemical-atomic force microscopy. Anal Chem 72:276–285

    Article  CAS  Google Scholar 

  65. Davoodi A, Pan J, Leygraf C, Norgren S (2005) In situ investigation of localized corrosion of aluminum alloys in chloride solution using integrated EC-AFM/ SECM techniques. Electrochem Sol State Lett 8:B21–B24

    Article  CAS  Google Scholar 

  66. Eckhard K, Shin H, Mizaikoff B, Schumann W, Kranz C (2007) Alternating current (AC) impedance imaging with combined atomic force scanning electrochemical microscopy (AFM-SECM). Electrochem Commun 9:1311–1315

    Article  CAS  Google Scholar 

  67. Snowden ME, Güell AG, Lai SCS et al (2012) Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurement. Anal Chem 84:2483–2491

    Article  CAS  Google Scholar 

  68. James P, Casillas N, Smyrl WH (1996) Simultaneous scanning electrochemical and photoelectrochemical microscopy by use of a metallized optical fiber. J Electrochem Soc 143:3853–3865

    Article  CAS  Google Scholar 

  69. Cliffel DE, Bard AJ (1998) Scanning electrochemical microscopy. 37. Light emission by electrogenerated chemiluminescence at SECM tips and their application to scanning optical microscopy. Anal Chem 70:1993–1998

    Article  CAS  Google Scholar 

  70. Falkenberg F, Fushimi K, Seo M (2003) Study on initiation of localized corrosion on copper thin film electrode by combinational use of an EQCM with liquid-phase ion gun. Corros Sci 45:2657–2670

    Article  CAS  Google Scholar 

  71. Keddam M, Portail N, Trinh D, Vivier V (2009) Progress in scanning electrochemical microscopy by coupling with electrochemical impedance and quartz crystal microbalance. ChemPhysChem 10:3175–3182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Ohtsuka .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Ohtsuka, T., Nishikata, A., Sakairi, M., Fushimi, K. (2018). Micro-electrochemical Approach for Corrosion Study. In: Electrochemistry for Corrosion Fundamentals. SpringerBriefs in Molecular Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-6820-1_6

Download citation

Publish with us

Policies and ethics