Skip to main content

Alginate Utilization in Tissue Engineering and Cell Therapy

  • Chapter
  • First Online:
Alginates and Their Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 11))

Abstract

Due to the structural similarity to the extracellular matrix, nowadays, hydrogels are widely used for tissue engineering applications. Among the various hydrogels, alginate is considered a very useful biomaterial that has found numerous applications in the biomedical field due to its favorable properties, including biocompatibility and ease of gelation. It has been used to design tissue engineering constructs of various structures, such as porous scaffolds, microspheres, films, and microcapsules for drug and cell delivery and various tissue engineering applications particularly for bone, cartilage, muscle, and vascular tissue engineering. This chapter will provide a comprehensive overview of the applications of alginate-based hydrogels as various forms of constructs and scaffolds for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880. https://doi.org/10.1021/cr000108x

    Article  Google Scholar 

  2. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11:20140817. https://doi.org/10.1098/rsif.2014.0817

    Article  Google Scholar 

  3. Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–640. https://doi.org/10.1016/S0955-0674(02)00364-2

    Article  Google Scholar 

  4. Al-shamkhani A, Duncan R (1995) Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J Bioact Compat Polym 10:4–13. https://doi.org/10.1177/088391159501000102

    Article  Google Scholar 

  5. Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54:289–340. https://doi.org/10.1146/annurev.micro.54.1.289

    Article  Google Scholar 

  6. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  Google Scholar 

  7. Boontheekul T, Kong H-J, Mooney DJ (2005) Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26:2455–2465. https://doi.org/10.1016/j.biomaterials.2004.06.044

    Article  Google Scholar 

  8. Smetana K (1993) Cell biology of hydrogels. Biomaterials 14:1046–1050. https://doi.org/10.1016/0142-9612(93)90203-E

    Article  Google Scholar 

  9. Price LS (1997) Morphological control of cell growth and viability. Bioessays 19:941–943. https://doi.org/10.1002/bies.950191102

    Article  Google Scholar 

  10. Kim D, Monaco E, Maki A et al (2010) Morphologic and transcriptomic comparison of adipose- and bone-marrow-derived porcine stem cells cultured in alginate hydrogels. Cell Tissue Res 341:359–370. https://doi.org/10.1007/s00441-010-1015-3

    Article  Google Scholar 

  11. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  Google Scholar 

  12. Kong HJ, Kaigler D, Kim K, Mooney DJ (2004) Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 5:1720–1727. https://doi.org/10.1021/bm049879r

    Article  Google Scholar 

  13. Balakrishnan B, Jayakrishnan A (2005) Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26:3941–3951. https://doi.org/10.1016/j.biomaterials.2004.10.005

    Article  Google Scholar 

  14. Liao H, Zhang H, Chen W (2009) Differential physical, rheological, and biological properties of rapid in situ gelable hydrogels composed of oxidized alginate and gelatin derived from marine or porcine sources. J Mater Sci Mater Med 20:1263–1271. https://doi.org/10.1007/s10856-009-3694-4

    Article  Google Scholar 

  15. Boanini E, Rubini K, Panzavolta S, Bigi A (2010) Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomater 6:383–388. https://doi.org/10.1016/j.actbio.2009.06.015

    Article  Google Scholar 

  16. Bouhadir KH, Lee KY, Alsberg E et al (2001) Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog 17:945–950. https://doi.org/10.1021/bp010070p

    Article  Google Scholar 

  17. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan a (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342. https://doi.org/10.1016/j.biomaterials.2005.04.012

    Article  Google Scholar 

  18. Sarker B, Papageorgiou DG, Silva R et al (2014) Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B 2:1470–1482. https://doi.org/10.1039/c3tb21509a

    Article  Google Scholar 

  19. Sarker B, Singh R, Silva R et al (2014) Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One 9:e107952. https://doi.org/10.1371/journal.pone.0107952

    Article  Google Scholar 

  20. Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6:171–183. https://doi.org/10.1016/j.ccr.2004.07.009

    Article  Google Scholar 

  21. Griffith LG, M a S (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224. https://doi.org/10.1038/nrm1858

    Article  Google Scholar 

  22. Liu X, Ma X (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486

    Article  Google Scholar 

  23. Annabi N, Nichol JW, Zhong X et al (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16:371–383. https://doi.org/10.1089/ten.teb.2009.0639

    Article  Google Scholar 

  24. Zmora S, Glicklis R, Cohen S (2002) Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials 23:4087–4094

    Article  Google Scholar 

  25. Sarker B, Hum J, Nazhat SN, Boccaccini AR (2015) Combining collagen and bioactive glasses for bone tissue engineering: a review. Adv Healthc Mater 4:176–194. https://doi.org/10.1002/adhm.201400302

    Article  Google Scholar 

  26. Wang Y, Yang C, Chen X, Zhao N (2006) Development and characterization of novel biomimetic composite scaffolds based on bioglass-collagen-hyaluronic acid-phosphatidylserine for tissue engineering applications. Macromol Mater Eng 291:254–262. https://doi.org/10.1002/mame.200500381

    Article  Google Scholar 

  27. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 6:1285–1309. https://doi.org/10.3390/ma6041285

    Article  Google Scholar 

  28. Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18:583–590. https://doi.org/10.1016/S0142-9612(96)00181-0

    Article  Google Scholar 

  29. Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32:1838–1847. https://doi.org/10.1016/j.biomaterials.2010.11.008

    Article  Google Scholar 

  30. Florczyk SJ, Kim DJ, Wood DL, Zhang M (2011) Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds. J Biomed Mater Res – Part A 98(A):614–620. https://doi.org/10.1002/jbm.a.33153

    Article  Google Scholar 

  31. Li Z, Ramay HR, Hauch KD et al (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928. https://doi.org/10.1016/j.biomaterials.2004.09.062

    Article  Google Scholar 

  32. Petrenko YA, Ivanov RV, Petrenko a Y, Lozinsky VI (2011) Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells. J Mater Sci Mater Med 22:1529–1540. https://doi.org/10.1007/s10856-011-4323-6

    Article  Google Scholar 

  33. Luo Z, Yang Y, Deng Y et al (2016) Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering. Colloids Surf B Biointerfaces 143:243–251. https://doi.org/10.1016/j.colsurfb.2016.03.047

    Article  Google Scholar 

  34. Yang C, Frei H, Rossi FM, Burt HM (2009) The differential in vitro and in vivo responses of bone marrow stromal cells on novel porous gelatin-alginate scaffolds. J Tissue Eng Regen Med 3:601–614. https://doi.org/10.1002/term.201

    Article  Google Scholar 

  35. Florczyk SJ, Leung M, Li Z et al (2013) Evaluation of three-dimensional porous chitosan-alginate scaffolds in rat calvarial defects for bone regeneration applications. J Biomed Mater Res Part A 101:2974–2983. https://doi.org/10.1002/jbm.a.34593

    Article  Google Scholar 

  36. Lin H-R, Yeh Y-J (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: Preparation, characterization, and in vitro studies. J Biomed Mater Res 71B:52–65. https://doi.org/10.1002/jbm.b.30065

    Article  Google Scholar 

  37. Rajesh R, Ravichandran D (2015) Development of a new carbon nanotube – alginate – hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering. Int J Nanomedicine 10:7–15

    Google Scholar 

  38. Sowjanya JA, Singh J, Mohita T et al (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surfs B Biointerfaces 109:294–300. https://doi.org/10.1016/j.colsurfb.2013.04.006

    Article  Google Scholar 

  39. Mishra R, Basu B, Kumar A (2009) Physical and cytocompatibility properties of bioactive glass-polyvinyl alcohol-sodium alginate biocomposite foams prepared via sol-gel processing for trabecular bone regeneration. J Mater Sci Mater Med 20:2493–2500. https://doi.org/10.1007/s10856-009-3814-1

    Article  Google Scholar 

  40. Suárez-González D, Barnhart K, Saito E et al (2010) Controlled nucleation of hydroxyapatite on alginate scaffolds for stem cell-based bone tissue engineering. J Biomed Mater Res Part A 95A:222–234. https://doi.org/10.1002/jbm.a.32833

    Article  Google Scholar 

  41. Sarker B, Li W, Zheng K et al (2016) Designing porous bone tissue engineering scaffolds with enhanced mechanical properties from composite hydrogels composed of modified alginate, gelatin, and bioactive glass. ACS Biomater Sci Eng. acsbiomaterials.6b00470. https://doi.org/10.1021/acsbiomaterials.6b00470

  42. Cai K, Zhang J, Deng L et al (2007) Physical and biological properties of a novel hydrogel composite based on oxidized alginate, gelatin and tricalcium phosphate for bone tissue engineering. Adv Eng Mater 9:1082–1088. https://doi.org/10.1002/adem.200700222

    Article  Google Scholar 

  43. Li Z, Zhang M (2005) Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res Part A 75:485–493. https://doi.org/10.1002/jbm.a.30449

    Article  Google Scholar 

  44. Benya P (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224. https://doi.org/10.1016/0092-8674(82)90027-7

    Article  Google Scholar 

  45. Homicz MR, Chia SH, Schumacher BL et al (2003) Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture. Laryngoscope 113:25–32. https://doi.org/10.1097/00005537-200301000-00005

    Article  Google Scholar 

  46. Hsu SH, Shu WW, Hsieh SC et al (2004) Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration. Artif Organs 28:693–703. https://doi.org/10.1111/j.1525-1594.2004.00046.x

    Article  Google Scholar 

  47. Re’em T, Tsur-Gang O, Cohen S (2010) The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFβ1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials 31:6746–6755. https://doi.org/10.1016/j.biomaterials.2010.05.025

    Article  Google Scholar 

  48. Wang L, Shansky J, Borselli C et al (2012) Design and fabrication of a biodegradable, covalently crosslinked shape-memory alginate scaffold for cell and growth factor delivery. Tissue Eng Part A 18:2000–2007. https://doi.org/10.1089/ten.tea.2011.0663

    Article  Google Scholar 

  49. Chen F, Tian M, Zhang D et al (2012) Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Mater Sci Eng C 32:310–320. https://doi.org/10.1016/j.msec.2011.10.034

    Article  Google Scholar 

  50. Sapir Y, Cohen S, Friedman G, Polyak B (2012) The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 33:4100–4109. https://doi.org/10.1016/j.biomaterials.2012.02.037

    Article  Google Scholar 

  51. Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A 101:272–284. https://doi.org/10.1002/jbm.a.34326

    Article  Google Scholar 

  52. Luo Y, Lode A, Wu C et al (2015) Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. ACS Appl Mater Interfaces 7:6541–6549. https://doi.org/10.1021/am508469h

    Article  Google Scholar 

  53. Luo Y, Wu C, Lode A, Gelinsky M (2013) Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication 5:15005. https://doi.org/10.1088/1758-5082/5/1/015005

    Article  Google Scholar 

  54. Wang X, Tolba E, Der HCS et al (2014) Effect of bioglass on growth and biomineralization of saos-2 cells in hydrogel after 3d cell bioprinting. PLoS One 9:1–7. https://doi.org/10.1371/journal.pone.0112497

    Google Scholar 

  55. Lee H, Ahn S-H, Kim GH (2012) Three-dimensional collagen/alginate hybrid scaffolds functionalized with a drug delivery system (DDS) for bone tissue regeneration. Chem Mater 24:881–891. https://doi.org/10.1021/cm200733s

    Article  Google Scholar 

  56. Zehnder T, Sarker B, Boccaccini AR, Detsch R (2015) Evaluation of an alginate–gelatine crosslinked hydrogel for bioplotting. Biofabrication 7:1–12. https://doi.org/10.1088/1758-5090/7/2/025001

    Article  Google Scholar 

  57. Grigore A, Sarker B, Fabry B et al (2014) Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels. Tissue Eng Part A 20:2140–2150. https://doi.org/10.1089/ten.tea.2013.0416

    Article  Google Scholar 

  58. Detsch R, Sarker B, Zehnder T et al (2015) Advanced alginate-based hydrogels. Mater Today 18:590–591. https://doi.org/10.1016/j.mattod.2015.10.013

    Article  Google Scholar 

  59. Sarker B, Rompf J, Silva R et al (2015) Alginate-based hydrogels with improved adhesive properties for cell encapsulation. Int J Biol Macromol 78:72–78. https://doi.org/10.1016/j.ijbiomac.2015.03.061

    Article  Google Scholar 

  60. Leite ÁJ, Sarker B, Zehnder T et al (2016) Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles. Biofabrication 8:35005. https://doi.org/10.1088/1758-5090/8/3/035005

    Article  Google Scholar 

  61. Marijnissen WJC, van Osch GJV, Aigner J et al (2002) Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials 23:1511–1517. https://doi.org/10.1016/S0142-9612(01)00281-2

    Article  Google Scholar 

  62. Kundu J, Shim J-H, Jang J et al (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9:1286–1297. https://doi.org/10.1002/term.1682

    Article  Google Scholar 

  63. Narayanan LK, Huebner P, Fisher MB et al (2016) 3D-bioprinting of polylactic acid (PLA) nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng 2:1732–1742. https://doi.org/10.1021/acsbiomaterials.6b00196

    Article  Google Scholar 

  64. Markstedt K, Mantas A, Tournier I et al (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496. https://doi.org/10.1021/acs.biomac.5b00188

    Article  Google Scholar 

  65. Wang CC, Yang KC, Lin KH et al (2011) A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials 32:7118–7126. https://doi.org/10.1016/j.biomaterials.2011.06.018

    Article  Google Scholar 

  66. Park J, Lee SJ, Chung S et al (2017) Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: characterization and evaluation. Mater Sci Eng C 71:678–684. https://doi.org/10.1016/j.msec.2016.10.069

    Article  Google Scholar 

  67. Gao Q, He Y, J zhong F et al (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215. https://doi.org/10.1016/j.biomaterials.2015.05.031

    Article  Google Scholar 

  68. Man Y, Wang P, Guo Y et al (2012) Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials 33:8802–8811. https://doi.org/10.1016/j.biomaterials.2012.08.054

    Article  Google Scholar 

  69. Ausländer S, Wieland M, Fussenegger M (2012) Smart medication through combination of synthetic biology and cell microencapsulation. Metab Eng 14:252–260. https://doi.org/10.1016/j.ymben.2011.06.003

    Article  Google Scholar 

  70. Li H-B, Jiang H, Wang C-Y et al (2006) Comparison of two types of alginate microcapsules on stability and biocompatibility in vitro and in vivo. Biomed Mater 1:42–47. https://doi.org/10.1088/1748-6041/1/1/007

    Article  Google Scholar 

  71. Schacht K, Jüngst T, Schweinlin M et al (2015) Biofabrication of cell-loaded 3D spider silk constructs. Angew Chemie Int Ed 54:2816–2820. https://doi.org/10.1002/anie.201409846

    Article  Google Scholar 

  72. Dhote V, Skaalure S, Akalp U et al (2013) On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage. J Mech Behav Biomed Mater 19:61–74. https://doi.org/10.1016/j.jmbbm.2012.10.016

    Article  Google Scholar 

  73. Lim F, Sun A (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910. https://doi.org/10.1126/science.6776628

    Article  Google Scholar 

  74. Abbah SA, WW L, Chan D et al (2006) In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute. Biochem Biophys Res Commun 347:185–191. https://doi.org/10.1016/j.bbrc.2006.06.072

    Article  Google Scholar 

  75. Moshaverinia A, Ansari S, Chen C et al (2013) Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering. Biomaterials 34:6572–6579. https://doi.org/10.1016/j.biomaterials.2013.05.048

    Article  Google Scholar 

  76. Freire MO, You H-K, Kook J-K et al (2011) Antibody-mediated osseous regeneration: a novel strategy for bioengineering bone by immobilized anti–bone morphogenetic protein-2 antibodies. Tissue Eng Part A 17:2911–2918. https://doi.org/10.1089/ten.tea.2010.0584

    Article  Google Scholar 

  77. Hwang Y-S, Cho J, Tay F et al (2009) The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials 30:499–507. https://doi.org/10.1016/j.biomaterials.2008.07.028

    Article  Google Scholar 

  78. Wang H, Lee J-K, Moursi A, Lannutti JJ (2003) Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J Biomed Mater Res A 67:599–608. https://doi.org/10.1002/jbm.a.10538

    Article  Google Scholar 

  79. Arpornmaeklong P, Kochel M, Depprich R et al (2004) Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study. Int J Oral Maxillofac Surg 33:60–70. https://doi.org/10.1054/ijom.2003.0492

    Article  Google Scholar 

  80. Kanno T, Takahashi T, Tsujisawa T et al (2005) Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J Oral Maxillofac Surg 63:362–369. https://doi.org/10.1016/j.joms.2004.07.016

    Article  Google Scholar 

  81. Rottensteiner U, Sarker B, Heusinger D et al (2014) In vitro and in vivo biocompatibility of alginate dialdehyde/gelatin hydrogels with and without nanoscaled bioactive glass for bone tissue engineering applications. Materials (Basel) 7:1957–1974. https://doi.org/10.3390/ma7031957

    Article  Google Scholar 

  82. Song K, Yang Y, Li S et al (2014) In vitro culture and oxygen consumption of NSCs in size-controlled neurospheres of Ca-alginate/gelatin microbead. Mater Sci Eng C Mater Biol Appl 40:197–203. https://doi.org/10.1016/j.msec.2014.03.028

    Article  Google Scholar 

  83. Silva R, Singh R, Sarker B et al (2014) Hybrid hydrogels based on keratin and alginate for tissue engineering. J Mater Chem B 2:5441–5451. https://doi.org/10.1039/c4tb00776j

    Article  Google Scholar 

  84. Silva R, Singh R, Sarker B et al (2016) Soft-matrices based on silk fibroin and alginate for tissue engineering. Int J Biol Macromol 2:5441–5451. https://doi.org/10.1016/j.ijbiomac.2016.04.045

    Google Scholar 

  85. Zhou H, HHK X (2011) The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials 32:7503–7513. https://doi.org/10.1016/j.biomaterials.2011.06.045

    Article  Google Scholar 

  86. Zeng Q, Han Y, Li H, Chang J (2014) Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. J Biomed Mater Res Part B Appl Biomater 102:42–51. https://doi.org/10.1002/jbm.b.32978

    Article  Google Scholar 

  87. Gorustovich A a, Roether JA, Boccaccini AR (2010) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev 16:199–207. https://doi.org/10.1089/ten.TEB.2009.0416

    Article  Google Scholar 

  88. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774

    Article  Google Scholar 

  89. Moshaverinia A, Xu X, Chen C et al (2013) Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomater 9:9343–9350. https://doi.org/10.1016/j.actbio.2013.07.023

    Article  Google Scholar 

  90. Guo J, Jourdian GW, Maccallum DK (1989) Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res 19:277–297. https://doi.org/10.3109/03008208909043901

    Article  Google Scholar 

  91. Ma H-L, Hung S-C, Lin S-Y et al (2003) Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res 64A:273–281. https://doi.org/10.1002/jbm.a.10370

    Article  Google Scholar 

  92. Endres M, Wenda N, Woehlecke H et al (2010) Microencapsulation and chondrogenic differentiation of human mesenchymal progenitor cells from subchondral bone marrow in Ca-alginate for cell injection. Acta Biomater 6:436–444. https://doi.org/10.1016/j.actbio.2009.07.022

    Article  Google Scholar 

  93. Chang J-C, Hsu S-H, Chen DC (2009) The promotion of chondrogenesis in adipose-derived adult stem cells by an RGD-chimeric protein in 3D alginate culture. Biomaterials 30:6265–6275. https://doi.org/10.1016/j.biomaterials.2009.07.064

    Article  Google Scholar 

  94. Focaroli S, Teti G, Salvatore V et al (2016) Calcium/cobalt alginate beads as functional scaffolds for cartilage tissue engineering. Stem Cells Int 2016:1–12. https://doi.org/10.1155/2016/2030478

    Article  Google Scholar 

  95. Gaetani P, Torre ML, Klinger M et al (2008) Adipose-derived stem cell therapy for intervertebral disc regeneration: an in vitro reconstructed tissue in alginate capsules. Tissue Eng Part A 14:1415–1423. https://doi.org/10.1089/ten.tea.2007.0330

    Article  Google Scholar 

  96. Ansari S, Chen C, Xu X et al (2016) Muscle tissue engineering using gingival mesenchymal stem cells encapsulated in alginate hydrogels containing multiple growth factors. Ann Biomed Eng 44:1908–1920. https://doi.org/10.1007/s10439-016-1594-6

    Article  Google Scholar 

  97. Kreeger PK, Deck JW, Woodruff TK, Shea LD (2006) The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials 27:714–723. https://doi.org/10.1016/j.biomaterials.2005.06.016

    Article  Google Scholar 

  98. Manju S, Muraleedharan CV, Rajeev A et al (2011) Evaluation of alginate dialdehyde cross-linked gelatin hydrogel as a biodegradable sealant for polyester vascular graft. J Biomed Mater Res B Appl Biomater 98:139–149. https://doi.org/10.1002/jbm.b.31843

    Article  Google Scholar 

  99. Yu J, KT D, Fang Q et al (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31:7012–7020. https://doi.org/10.1016/j.biomaterials.2010.05.078

    Article  Google Scholar 

  100. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  Google Scholar 

  101. Moshaverinia A, Xu X, Chen C et al (2014) Application of stem cells derived from the periodontal ligament orgingival tissue sources for tendon tissue regeneration. Biomaterials 35:2642–2650. https://doi.org/10.1016/j.biomaterials.2013.12.053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo R. Boccaccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarker, B., Boccaccini, A.R. (2018). Alginate Utilization in Tissue Engineering and Cell Therapy. In: Rehm, B., Moradali, M. (eds) Alginates and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-6910-9_5

Download citation

Publish with us

Policies and ethics