Skip to main content

Electrolyte and Metabolic Disorder

  • Chapter
  • First Online:
Management and Rehabilitation of Spinal Cord Injuries
  • 1202 Accesses

Abstract

In patients with spinal cord injuries, various fluid and electrolyte, metabolic, and endocrine disorders occur. Changes in basal metabolism and body composition after the spinal cord injury often increase the risk of metabolic syndrome and cardiovascular disease. Rapid bone loss increases the risk of fracture after spinal cord injury. Mechanical effects, fluid responses, and autonomic changes due to various conditions including prolonged recumbency, muscle paralysis, and neurogenic dysfunction can cause fluid migration and electrolyte imbalance in people with chronic diseases or disorders including patients with spinal cord injuries. Some patients may be asymptomatic but have symptoms such as chronic dependent edema, dehydration, orthostatic hypotension, and chronic renal failure. Hyponatremia, hypernatremia, metabolic acidosis, and metabolic alkalosis are clinically frequent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrogue HJ, Madias NE. Hyponatremia. NEJM. 2000;342:1581–9.

    Article  CAS  PubMed  Google Scholar 

  • Aidinoff E, Bluvshtein V, Bierman U, et al. Coronary artery disease and hypertension in a non-selected spinal cord injury patient population. Spinal Cord. 2017;55:321–6.

    Article  CAS  PubMed  Google Scholar 

  • Anson CA, Shepherd C. Incidence of secondary complications in spinal cord injury. Int J Rehabil Res. 1996;19:55–66.

    Article  CAS  PubMed  Google Scholar 

  • Ashe MC, Craven C, Eng JJ, et al. Prevention and treatment of bone loss after a spinal cord injury: a systematic review. Top Spinal Cord Inj Rehabil. 2007;13:123–45.

    Article  PubMed  Google Scholar 

  • Bauman WA, Spungen AM. Metabolic changes in persons after spinal cord injury. Phys Med Rehab Clin North Am. 2000;11:102–40.

    Google Scholar 

  • Bauman WA, Spungen AM. Carbohydrate and lipid metabolism in chronic spinal cord injury. J Spinal Cord Med. 2001;24:266–77.

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Spungen AM. Coronary heart disease in individuals with spinal cord injury: assessment of risk factors. Spinal Cord. 2008;46:466–76.

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Adkins RH, Spungen AM, et al. Is immobilization associated with an abnormal lipoprotein profile? Observations from a diverse cohort. Spinal Cord. 1999;37:485–93.

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Spungen AM, Adkins RH, et al. Metabolic and endocrine changes in persons aging with spinal cord injury. Assist Technol. 2001;11:88–96.

    Article  Google Scholar 

  • Bauman WA, Schwartz E, Kirshblum S, et al. Dual-energy X-ray absorptiometry overestimates bone mineral density of the lumbar spine in persons with spinal cord injury. Spinal Cord. 2009;47:628–33.

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Schnitzer TJ, Chen D. Management of osteoporosis after spinal cord injury: what can be done? Point/counterpoint. PM R. 2010;2:566–72.

    Article  PubMed  Google Scholar 

  • Bauman WA, Korsten MA, Radulovic M, et al. 31st g. Heiner Sell lectureship: secondary medical consequences of spinal cord injury. Top Spinal Cord Inj Rehabil. 2012;18:354–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biering-Sorensen F, Bohn HH, Schaadt OP. Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia. 1998;26:293–301.

    Google Scholar 

  • Biering-Sorensen F, Hansen B, Lee BS. Non-pharmacological treatment and prevention of bone loss after spinal cord injury: a systematic review. Spinal Cord. 2009;47:508–18.

    Article  CAS  PubMed  Google Scholar 

  • Blissitt PA. Nutrition in acute spinal cord injury. Crit Care Nurs Clin North Am. 1990;2:375–84.

    Article  CAS  PubMed  Google Scholar 

  • Brenes G, Dearwater S, Shapera R, et al. High density lipoprotein cholesterol concentrations in physically active and sedentary spinal cord injured patients. Arch Phys Med Rehabil. 1986;67:445–50.

    CAS  PubMed  Google Scholar 

  • Buchholz AC, Pencharz PB. Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr Metab Care. 2004;7:635–9.

    Article  PubMed  Google Scholar 

  • Buffington MA, Abreo K. Hyponatremia: a review. J Intensive Care Med. 2016;31:223–6.

    Article  PubMed  Google Scholar 

  • Burr RG, Clift-Peace L, Nuseibeh I. Haemoglobin and albumin as predictors of length of stay of spinal injured patients in a rehabilitation centre. Paraplegia. 1993;31:473–8.

    CAS  PubMed  Google Scholar 

  • Carlson KF, Wilt TJ, Taylor BC, et al. Effect of exercise on disorders of carbohydrate and lipid metabolism in adults with traumatic spinal cord injury: systematic review of the evidence. J Spinal Cord Med. 2009;32:361–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charmetant C, Phaner V, Condemine A, et al. Diagnosis and treatment of osteoporosis in spinal cord injury patients: a literature review. Ann Phys Rehabil Med. 2010;53:655–68.

    Article  CAS  PubMed  Google Scholar 

  • Charney P. Nutrition assessment in the 1990s: where are we now? Nutr Clin Pract. 1995;10:131–9.

    Article  CAS  PubMed  Google Scholar 

  • Claus-Walker J, Halstead LS. Metabolic and endocrine changes in spinal cord injury: I. The nervous system before and after transection of the spinal cord. Arch Phys Med Rehabil. 1981;62:595–601.

    CAS  PubMed  Google Scholar 

  • Claus-Walker J, Halstead LS. Metabolic and endocrine changes in spinal cord injury: II (section 1). Consequences of partial decentralization of the autonomic nervous system. Arch Phys Med Rehabil. 1982a;63:569–75.

    CAS  PubMed  Google Scholar 

  • Claus-Walker J, Halstead LS. Metabolic and endocrine changes in spinal cord injury: II (section 2). Partial decentralization of the autonomic nervous system. Arch Phys Med Rehabil. 1982b;63:576–80.

    CAS  PubMed  Google Scholar 

  • Claus-Walker J, Halstead LS. Metabolic and endocrine changes in spinal cord injury: III. Less quanta of sensory input plus bedrest and illness. Arch Phys Med Rehabil. 1982c;63:628–31.

    CAS  PubMed  Google Scholar 

  • Claus-Walker J, Halstead LS. Metabolic and endocrine changes in spinal cord injury: IV. Compounded neurologic dysfunctions. Arch Phys Med Rehabil. 1982d;63:632–8.

    CAS  PubMed  Google Scholar 

  • Claus-Walker J, Spencer WA, Carter RE, et al. Electrolytes and the renin-angiotensin-aldosterone axis in traumatic quadriplegia. Arch Phys Med Rehabil. 1977;58:283–6.

    CAS  PubMed  Google Scholar 

  • Dauty M, Perrouin Verbe B, Maugars Y, et al. Supralesional and sublesional bone mineral density in spinal-cord injured patients. Bone. 2000;27:305–9.

    Article  CAS  PubMed  Google Scholar 

  • Dawodu TS, Scott DD, Chase M. Nutritional management in the rehabilitation setting, 2013. http://emedicine.medscape.com/article/318180-overview. Accessed Oct 2018

  • Devoto G, Gallo F, Marchello C, et al. Prealbumin serum concentrations as a useful tool in the assessment of malnutrition in hospitalized patients. Clin Chem. 2006;52:2281–5.

    Article  CAS  PubMed  Google Scholar 

  • Dionyssiotis Y. Spinal cord injury-related bone impairment and fractures: an update on epidemiology and physiopathological mechanisms. J Musculoskelet Neuronal Interact. 2011;11:257–65.

    CAS  PubMed  Google Scholar 

  • Dionyssiotis Y. Malnutrition in spinal cord injury: more than nutritional deficiency. J Clin Med Res. 2012;4:227–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dionyssiotis Y. Malnutrition in paraplegia. In: Dionyssiotis Y, editor. Topics in paraplegia. London: IntechOpen; 2014. https://doi.org/10.5772/58382. Available from: https://www.intechopen.com/books/topics-in-paraplegia/malnutrition-in-paraplegia.

    Chapter  Google Scholar 

  • Dolbow DR, Gorgey AS, Daniels JA, et al. The effects of spinal cord injury and exercise on bone mass: a literature review. NeuroRehabilitation. 2011;29:261–9.

    CAS  PubMed  Google Scholar 

  • Eckel RH, Cornier MA. Update on the NCEP ATP-III emerging cardiometabolic risk factors. BMC Med. 2014;12:115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards WB, Schnitzer TJ, Troy KL. The mechanical consequence of actual bone loss and stimulated bone recovery in acute spinal cord injury. Bone. 2014;60:141–7.

    Article  PubMed  Google Scholar 

  • Eleazer GP, Bird L, Egbert J, et al. Appropriate protocol for zinc therapy in long term care facilities. J Nutr Elder. 1995;14:31–8.

    Article  CAS  PubMed  Google Scholar 

  • Fay DE, Poplausky M, Gruber M, et al. Long-term enteral feeding: a retrospective comparison of delivery via percutaneous endoscopic gastrostomy and nasoenteric tubes. Am J Gastroenterol. 1991;86:1604–9.

    CAS  PubMed  Google Scholar 

  • Friesbie JH. Fractures after myelopathy: the risk quantified. J Spinal Cord Med. 1997;20:66–9.

    Article  Google Scholar 

  • Furlan JC, Fehlings MG. Hyponatremia in the acute stage after traumatic cervical spinal cord injury: clinical and neuroanatomic evidence for autonomic dysfunction. Spine (Phila Pa 1976). 2009;34:501–11.

    Article  Google Scholar 

  • Gater DR. Obesity after spinal cord injury. Phys Med Rehabil Clin North Am. 2007a;18:333–51.

    Article  Google Scholar 

  • Gater DR. Pathophysiology of obesity after spinal cord injury. Top Spinal Cord Inj Rehabil. 2007b;12:20–34.

    Article  Google Scholar 

  • Giangregorio L, McCartney N. Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med. 2006;29:489–500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goh KP. Management of hyponatremia. Am Fam Phys. 2004;69:2387–94.

    Google Scholar 

  • Green F, Olson DA, editors. Medical management of long-term disability. 2nd ed. Boston, MA: Butterworth-Heinemann; 1996.

    Google Scholar 

  • Groah SL, Nash MS, Ljungberg IH, et al. Nutrient intake and body habitus after spinal cord injury: an analysis by sex and level of injury. J Spinal Cord Med. 2009;32:25–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris D, Haboubi N. Malnutrition screening in the elderly population. J R Soc Med. 2005;98:411–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hertroijs D, Wijnen C, Leistra E, et al. Rehabilitation patients: undernourished and obese? J Rehabil Med. 2012;44:696–701.

    Article  PubMed  Google Scholar 

  • Heyland DK, Dhaliwal R, Drover JW, et al. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27:355–73.

    Article  PubMed  Google Scholar 

  • Illner K, Brinkmann G, Heller M, et al. Metabolically active components of fat free mass and resting energy expenditure in nonobese adults. Am J Physiol Endocrinol Metab. 2000;278:E308–15.

    Article  CAS  PubMed  Google Scholar 

  • Ingenbleek Y, Van Den Schrieck HG, De Nayer P, et al. Albumin, transferrin and the thyroxine binding prealbumin/retinol-binding protein (TBPARBP) complex in assessment of malnutrition. Clin Chim Acta. 1975;63:61–7.

    Article  CAS  PubMed  Google Scholar 

  • Khalil RE, Gorgey AS, Janisko M, et al. The role of nutrition in health status after spinal cord injury. Aging Dis. 2013;4:14–22.

    PubMed  Google Scholar 

  • Kriz J, Schuck O, Horackova M. Hyponatremia in spinal cord injury patients: new insight into differentiating between the dilution and depletion forms. Spinal Cord. 2015;53:291–6.

    Article  CAS  PubMed  Google Scholar 

  • Kugler JP, Hustead T. Hyponatremia and hypernatremia in the elderly. Am Fam Phys. 2000;61:3623–30.

    CAS  Google Scholar 

  • Lala D, Craven BC, Thabane KL, et al. Exploring the determinants of fracture risk among individuals with spinal cord injury. Osteoporosis Int. 2013;25:177–85.

    Article  Google Scholar 

  • Laughton GE, Buchholz AC, Martin Ginis KA. Lowering body mass index cutoffs better identifies obese persons with spinal cord injury. Spinal Cord. 2009;47:757–62.

    Article  CAS  PubMed  Google Scholar 

  • Leblanc AD, Schneider VS, Ecvans HJ, et al. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990;5:843–50.

    Article  CAS  PubMed  Google Scholar 

  • Magnuson B, Hatton J, Zweng TN, et al. Pentobarbital coma in neurosurgical patients: nutrition considerations. Nutr Clin Pract. 1994;9:146–50.

    Article  CAS  PubMed  Google Scholar 

  • Maïmoun L, Fattal C, Sultan C. Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review. Metabolism. 2011;60:1655–63.

    Article  PubMed  CAS  Google Scholar 

  • Monroe MB, Tataranni PA, Pratley R, et al. Lower daily energy expenditure as measured by a respiratory chamber in subjects with spinal cord injury compared with control subjects. Am J Clin Nutr. 1998;68:1223–7.

    Article  CAS  PubMed  Google Scholar 

  • Nash MS, Mendez AJ. A guideline-driven assessment of need for cardiovascular disease risk intervention in persons with chronic paraplegia. Arch Phys Med Rehabil. 2007;88:751–7.

    Article  PubMed  Google Scholar 

  • National Spinal Cord Injury Statistical Center. The 2017 annual statistical report for the spinal cord model systems. Birmingham: National Spinal Cord Injury Statistical Center; 2018.

    Google Scholar 

  • Peiffer SC, Blust P, Leyson JF. Nutritional assessment of the spinal cord injured patient. J Am Diet Assoc. 1981;78:501–5.

    CAS  PubMed  Google Scholar 

  • Preston RA. Acid-base, fluids and electrolytes: made ridiculously simple. 2nd ed. Miami, FL: MedMaster, Inc.; 2011.

    Google Scholar 

  • Robertson CS, Grossman RG. Protection against spinal cord ischemia with insulin-induced hypoglycaemia. J Neurosurg. 1987;67:739–44.

    Article  CAS  PubMed  Google Scholar 

  • Robinson MK, Trujillo EB, Mogensen KM, et al. Improving nutritional screening of hospitalized patients: the role of prealbumin. JPEN J Parenter Enteral Nutr. 2003;27:389–95.

    Article  PubMed  Google Scholar 

  • Rondon-Berrios H, Agaba EI, Tzamaloukas AH. Hyponatremia: pathophysiology, classification, manifestations and management. Int Urol Nephrol. 2014;46:2153–65.

    Article  CAS  PubMed  Google Scholar 

  • Shetty P. Malnutrition and under nutrition. Medicine. 2003;31:18–22.

    Article  Google Scholar 

  • Shields RK, Schlechte J, Dudley-Javoroski SD, et al. Bone mineral density after spinal cord injury: a reliable method for knee measurement. Arch Phys Med Rehabil. 2005;86:1969–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spasovski G, Vanholder R, Allolio B, et al. Hyponatremia diagnosis and treatment clinical practice guidelines. Nefrologia. 2017;37:370–80.

    Article  PubMed  Google Scholar 

  • Spungen AM, Adkins RH, Stewart CA, et al. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol. 2003;95:2398–407.

    Article  PubMed  Google Scholar 

  • Sved AF, McDowell FH, Blessing WW. Release of antidiuretic hormone in quadriplegic subjects in response to head-up tilt. Neurology. 1985;35:78–82.

    Article  CAS  PubMed  Google Scholar 

  • Thibault-Halman G, Casha S, Singer S, et al. Acute management of nutritional demands after spinal cord injury. J Neurotrauma. 2011;28:1497–507.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaidya C, Ho W, Freda BJ. Management of hyponatremia: providing treatment and avoiding harm. Cleve Clin J Med. 2010;77:715–26.

    Article  PubMed  Google Scholar 

  • Vico L, Collet P, Guignandon A, Lafage-Proust MH, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000;355:1607–11.

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL, Preiser JC. When should we add parenteral to enteral nutrition? Lancet. 2013;381:354–5.

    Article  PubMed  Google Scholar 

  • Woodward M, Gonski P, Grossmann M, et al. Diagnosis and management of hyponatremia in the older patient. Intern Med. 2018;48(Suppl 1):5–12.

    Article  CAS  Google Scholar 

  • Yee AH, Rabinstein AA. Neurologic presentations of acid-base imbalance, electrolyte abnormalities, and endocrine emergencies. Neurol Clin. 2010;28:1–16.

    Article  PubMed  Google Scholar 

  • Zenenberg RD, Carluccio AL, Merlin MA. Hyponatremia: evaluation and management. Hosp Pract (1995). 2010;38:89–96.

    Article  Google Scholar 

Suggested Reading

  • Cairo JM, editor. Pilbeam’s mechanical ventilation. Physiological and clinical applications. St. Louis, MO: Elsevier; 2016.

    Google Scholar 

  • Cardenas DD, Dalal K, editors. Spinal cord injury rehabilitation, Physical medicine and rehabilitation clinics of North America. Philadelphia, PA: Elsevier; 2014.

    Google Scholar 

  • Cardenas DD, Hooton TM, editors. Medical complications in physical medicine and rehabilitation. New York: Demos Medical Publishing, LLC; 2015.

    Google Scholar 

  • Eltorai IM, Schmit JK, editors. Emergencies in chronic spinal cord injury patients. New York: Eastern Paralyzed Veterans Association; 2001.

    Google Scholar 

  • Green D, Olson DA, editors. Medical management of long-term disability. 2nd ed. Boston, MA: Butterworth-Heinemann; 1996.

    Google Scholar 

  • Hattingen E, Klein JC, Weidauer S, Vrionis F, Setzer M, editors. Diseases of the spinal cord. Heidelberg: Springer; 2015.

    Google Scholar 

  • Illis LS, editor. Spinal cord dysfunction: assessment. Oxford: Oxford University Press; 1988.

    Google Scholar 

  • Kirshblum S, Campagnolo DI, editors. Spinal cord medicine. 2nd ed. Philadelphia, PA: Wolters Kluwer, Lippincott, Williams & Wilkins; 2011.

    Google Scholar 

  • Lee BY, Ostrander LE, editors. The spinal cord injured patient. 2nd ed. New York: Demos; 2002.

    Google Scholar 

  • Lin VW, editor. Spinal cord medicine. Principles and practice. 2nd ed. New York: Demos Medical; 2010.

    Google Scholar 

  • Preston RA. Acid-base, fluids and electrolytes: made ridiculously simple. 2nd ed. Miami, FLw: MedMaster, Inc.; 2011.

    Google Scholar 

  • Sabharwal S. Essentials of spinal cord medicine. New York: Demos Medical; 2014.

    Google Scholar 

  • Verhaagen J, McDonald JW III. Spinal cord injury. In: Aminoff MJ, Boller F, Swaab DF, editors. Handbook of clinical neurology, 3rd series, vol. 109. London: Elsevier; 2012.

    Google Scholar 

  • Vinken PJ, Bruyn GW, editors. Injuries of the spine and spinal cord. Part I. Handbook of clinical neurology, vol. 25. Oxford: North-Holland Publishing Company; 1976.

    Google Scholar 

  • Weaver LC. In: Polosa C, editor. Autonomic dysfunction after spinal cord injury, Progress in brain research, vol. 152. New York: Elsevier; 2006.

    Google Scholar 

  • Weidner N, Rupp R, Taney KE, editors. Neurological aspects of spinal cord injury. Cham: Springer; 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ko, HY. (2019). Electrolyte and Metabolic Disorder. In: Management and Rehabilitation of Spinal Cord Injuries. Springer, Singapore. https://doi.org/10.1007/978-981-10-7033-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7033-4_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7032-7

  • Online ISBN: 978-981-10-7033-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics