Skip to main content

Characterization of Turbulent Combustion Systems Using Dynamical Systems Theory

  • Chapter
  • First Online:
Modeling and Simulation of Turbulent Combustion

Abstract

Turbulent combustion which is ubiquitous in all real engines in power and propulsion industries has inspired the combustion community to a great extent in recent years. Turbulence being the most significant unresolved problem gets more complicated by the interaction with combustion as combustion involves a large number of chemical reactions occurring at different time scales. A researcher often focuses on some specialized problems of turbulent combustion as it has many different aspects to investigate. One such challenging aspect of turbulent combustion is combustion dynamics. Many such facets of combustion dynamics have been understood through modelling, simulation and experiments. The present chapter proposes a survey of combustion dynamics which has been addressed under the parlance of dynamical systems theory. More recently, combustion instability in turbulent combustors such as modern low-\(NO_x\) gas turbine has gained a lot of attention. The stable state is generally characterized by combustion noise which is generated by turbulent reactive flow. A transition occurs from combustion noise to combustion instability through a dynamical regime called intermittency. Combustion instability is, in general, detrimental for all combustion systems except pulse combustors where combustion instability is deliberately maintained for better performance. The dynamical transition in pulse combustor has also been analyzed both theoretically and experimentally. The analysis of a nonlinear analytical model using dynamical systems theory reveals the regime of limit cycle oscillations, Hopf bifurcation, period-doubling bifurcations and so on. A case study of numerical continuation in pulse combustor model will be explained in detail at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balasubramanian K, Sujith R (2008a) Phys Fluids 20(4):044103

    Google Scholar 

  • Balasubramanian K, Sujith R (2008b) J Fluid Mech 594:29–57

    Google Scholar 

  • Bloom F, Patterson T (2009) Nonlinear Anal Real World Appl 10(5):3002–3017

    Article  Google Scholar 

  • Buckmaster JD (1985) The mathematics of combustion. SIAM

    Google Scholar 

  • Burnley VS (1996)

    Google Scholar 

  • Culick F (1988)

    Google Scholar 

  • Culick F (1970) Combust Sci Technol 2(4):179–201

    Article  Google Scholar 

  • Culick F (1976) Acta Astronaut 3(9–10):735–757

    Article  Google Scholar 

  • Culick F (1994) AIAA J 32(1):146–169

    Article  Google Scholar 

  • Datta S, Mondal S, Mukhopadhyay A, Sanyal D, Sen S (2009) Combust Theory Model 13(1):17–38

    Article  Google Scholar 

  • Daw CS, Thomas JF, Richards GA, Narayanaswami LL (1995) Chaos Interdisc J Nonlinear Sci 5(4):662–670

    Article  Google Scholar 

  • Dhooge A, Govaerts W, Kuznetsov YA (2003) ACM Trans Math Softw (TOMS) 29(2):141–164

    Article  Google Scholar 

  • Di Benedetto A, Marra F, Russo G (2002) Combust Sci Technol 174(10):1–18

    Article  Google Scholar 

  • Domen S, Gotoda H, Kuriyama T, Okuno Y, Tachibana S (2015) Proc Combust Inst 35(3):3245–3253

    Article  Google Scholar 

  • Dowling AP (1997) J Fluid Mech 346:271–290

    Article  MathSciNet  Google Scholar 

  • Edwards K, Finney C, Nguyen K, Daw C (2000) In: 2000 Technical meeting of the central states section of the combustion institute, pp 249–254

    Google Scholar 

  • Edwards K, Nguyen K, Daw C (2001) In: Proceedings of the second joint meeting of the US sections of the combustion institute, vol 10, pp 3871–3889

    Google Scholar 

  • Farge M (1992) Annu Rev Fluid Mech 24(1):395–458

    Article  MathSciNet  Google Scholar 

  • Fichera A, Losenno C, Pagano A (2001) Appl Energy 70(2):179–191

    Article  Google Scholar 

  • Garcia-Agreda A, Di Sarli V, Di Benedetto A (2012) Int J Hydrogen Energy 37(8):6922–6932

    Article  Google Scholar 

  • Gemmen R (1996) J Eng Gas Turbines Power 118:469

    Article  Google Scholar 

  • Geng T, Zheng F, Kiker A, Kuznetsov A, Roberts W (2007) Exp Thermal Fluid Sci 31(7):641–647

    Article  Google Scholar 

  • Gopalakrishnan E, Sujith R (2015) J Fluid Mech 776:334–353

    Article  Google Scholar 

  • Gotoda H, Amano M, Miyano T, Ikawa T, Maki K, Tachibana S (2012) Chaos Interdisc J Nonlinear Sci 22(4):043128

    Article  Google Scholar 

  • Gotoda H, Nikimoto H, Miyano T, Tachibana S (2011) Chaos Interdisc J Nonlinear Sci 21(1):013124

    Article  Google Scholar 

  • Gotoda H, Shinoda Y, Kobayashi M, Okuno Y, Tachibana S (2014) Phys Rev E 89(2):022910

    Article  Google Scholar 

  • Heckl MA (1985) Heat sources in acoustic resonators. PhD thesis, University of Cambridge

    Google Scholar 

  • Heckl MA (1988) J Sound Vib 124(1):117–133

    Article  Google Scholar 

  • Heckl MA (1990) Acta Acustica United Acustica 72(1):63–71

    Google Scholar 

  • Hosseini S (2009) Non-linearities in the thermoacoustic response of a premixed swirl burner. PhD thesis

    Google Scholar 

  • In V, Spano ML, Neff JD, Ditto WL, Daw CS, Edwards KD, Nguyen K (1997) Chaos Interdisc J Nonlinear Sci 7(4):605–613

    Article  Google Scholar 

  • Jahnke CC, Culick FE (1994) J Propul Power 10(4):508–517

    Article  Google Scholar 

  • Kabiraj L, Sujith R (2012) J Fluid Mech 713:376–397

    Article  MathSciNet  Google Scholar 

  • Kabiraj L, Saurabh A, Wahi P, Sujith R (2012a) Chaos Interdisc J Nonlinear Sci 22(2):023129

    Google Scholar 

  • Kabiraj L, Sujith R, Wahi P (2012b) J Eng Gas Turbines Power 134(3):031502

    Google Scholar 

  • Kabiraj L, Sujith R, Wahi P (2012c) Fluid Dyn Res 44(3):031408

    Google Scholar 

  • Kadanoff LP (1983) Phys Today 36:46–63

    Article  Google Scholar 

  • Kashinath K, Hemchandra S, Juniper MP (2013) Combust Flame 160(12):2856–2865

    Article  Google Scholar 

  • Kashinath K, Waugh IC, Juniper MP (2014) J Fluid Mech 761:399–430

    Article  Google Scholar 

  • Kushari A, Rosen L, Jagoda J et al (1996) In: Symposium (international) on combustion, vol 26. Elsevier, pp 3363–3368

    Google Scholar 

  • Lei S, Turan A (2009) Combust Theory Model 13(3):541–557

    Article  Google Scholar 

  • Lieuwen TC, Yang V (2005) Progress in astronautics and aeronautics

    Google Scholar 

  • Lieuwen T (2001) J Fluid Mech 435:289–303

    Article  Google Scholar 

  • Lieuwen TC (2002) J Propul Power 18(1):61–67

    Article  Google Scholar 

  • Margolis SB (1993) Combust Sci Technol 88(3–4):223–246

    Article  Google Scholar 

  • Margolis SB (1994) Combust Flame 99(2):311–322

    Article  Google Scholar 

  • Matveev KI, Culick F (2003) Combust Sci Technol 175(6):1059–1083

    Article  Google Scholar 

  • Meng X, de Jong W, Kudra T (2016) Renew Sustain Energy Rev 55:73–114

    Article  Google Scholar 

  • Mestrom W (2002) Master’s thesis. Utrecht University, Utrecht, The Netherlands, Mathematical Institute

    Google Scholar 

  • Mondal S, Mukhopadhyay A, Sen S (2012) Combust Theory Model 16(1):59–74

    Article  Google Scholar 

  • Mondal S, Mukhopadhyay A, Sen S (2014) Combust Sci Technol 186(2):139–152

    Article  Google Scholar 

  • Mondal S, Mukhopadhyay A, Sen S (2015) Pramana J Phys 84(3)

    Google Scholar 

  • Mondal S, Mukhopadhyay A, Sen S (2016) Combust Theory Model 1–16

    Google Scholar 

  • Mondal S, Unni VR, Sujith R (2016) In: Conference on nonlinear systems and dynamics IISER Kolkata, vol 16, 18

    Google Scholar 

  • Mondal S, Unni VR, Sujith R (2017) J Fluid Mech 811:659–681

    Article  MathSciNet  Google Scholar 

  • Mukhopadhyay A, Datta S, Sanyal D (2008) J Eng Gas Turbines Power 130(1):011507

    Article  Google Scholar 

  • Nair V, Sujith R (2014) J Fluid Mech 747:635–655

    Article  Google Scholar 

  • Nair V, Sujith R (2015) Combust Sci Technol 187(11):1821–1835

    Article  Google Scholar 

  • Nair V, Thampi G, Karuppusamy S, Gopalan S, Sujith R (2013) Int J Spray Combust Dyn 5(4):273–290

    Article  Google Scholar 

  • Nair V, Thampi G, Sujith R (2014) J Fluid Mech 756:470–487

    Article  Google Scholar 

  • Narayanaswami L, Richards G (1996) J Eng Gas Turbines Power 118:461

    Article  Google Scholar 

  • Noiray N, Schuermans B (2013) Int J Non-Linear Mech 50:152–163

    Article  Google Scholar 

  • Noiray N, Durox D, Schuller T, Candel S (2008) J Fluid Mech 615:139–167

    Article  Google Scholar 

  • Pawar SA, Vishnu R, Vadivukkarasan M, Panchagnula M, Sujith R (2016) J Eng Gas Turbines Power 138(4):041505

    Article  Google Scholar 

  • Peracchio A, Proscia W (1999) Trans-ASME J Eng Gas Turbine Power 121:415–421

    Article  Google Scholar 

  • Peters N (2000) Turbulent combustion. Cambridge University Press

    Google Scholar 

  • Petrova MV, McGarry M, Wang H (2008) J Heat Transf 130(7):071201

    Article  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2003) Synchronization: a universal concept in nonlinear sciences, vol 12. Cambridge University Press

    Google Scholar 

  • Polifke W (2004) Advances in aeroacoustics and applications, 2004–05

    Google Scholar 

  • Preetham P, Lieuwen T (2004) In: 40th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, vol 4035

    Google Scholar 

  • Putnam A, Belles F, Kentfield J (1986) Prog Energy Combust Sci 12(1):43–79

    Article  Google Scholar 

  • Rayleigh JWS (1878) Nature 18(455):319–321

    Article  Google Scholar 

  • Rhode M, Rollins R, Markworth A, Edwards K, Nguyen K, Daw C, Thomas J (1995) J Appl Phys 78(4):2224–2232

    Article  Google Scholar 

  • Richards G, Morris G, Shaw D, Keeley S, Welter M (1993) Combust Sci Technol 94(1–6):57–85

    Article  Google Scholar 

  • Russo G, Benedetto AD, Marra F (2005) Combust Sci Technol 177(2):413–434

    Article  Google Scholar 

  • Sterling JD (1993) Combust Sci Technol 89(1–4):167–179

    Article  Google Scholar 

  • Strogatz SH (2014) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview Press

    Google Scholar 

  • Subramanian P (2011)

    Google Scholar 

  • Tang Y, Waldherr G, Jagoda J, Zinn B (1995) Combust Flame 100(1–2):251–261

    Article  Google Scholar 

  • Tony J, Gopalakrishnan E, Sreelekha E, Sujith R (2015) Phys Rev E 92(6):062902

    Article  Google Scholar 

  • Trefethen LN, Embree M (2005) Spectra and pseudospectra: the behavior of nonnormal matrices and operators. Princeton University Press

    Google Scholar 

  • Waugh IC, Juniper MP (2011) Int J Spray Combust Dyn 3(3):225–241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirshendu Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S., Mukhopadhyay, A., Sen, S. (2018). Characterization of Turbulent Combustion Systems Using Dynamical Systems Theory. In: De, S., Agarwal, A., Chaudhuri, S., Sen, S. (eds) Modeling and Simulation of Turbulent Combustion. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7410-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7410-3_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7409-7

  • Online ISBN: 978-981-10-7410-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics