Skip to main content

Cooperative Detection Metric Wave Radar Techniques

  • Chapter
  • First Online:
Advanced Metric Wave Radar
  • 768 Accesses

Abstract

The wavelength characteristic of metric wave radar makes it have the advantages of anti-stealth, anti-ARM, and long detection range. However, because of its narrow bandwidth and wide beam, there are some limitations in improving angular resolution and locating precision by single metric wave radar. The metric wave radar adopts cooperative detection technique to enhance the performance of metric wave radar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. CHEN Dejun, RAO Jie, SHAO Xijun. Radar Coordinated Detection Based on Information Grid[J]. Fire Control and Command Control, 2011(2):24–27.

    Google Scholar 

  2. LIU Zhanglin, CHEN Baixiao. Study on Maximum Likelihood Supper Resolution Height Finding Technique for Metric Wave Radar[J]. Radar Science and Technology, 2011, 9(4): 308–310.

    Google Scholar 

  3. SONG Shiping, Zhao Jianchuan. Cooperative Engagement Capability and Its Advance[J]. Ship Electronic Engineering, 2001(1):4–11.

    Google Scholar 

  4. Rivers B P, Puttre M. Victory at CEC: United States Navy Cooperative Engagement Capability, Development and Analysis[J]. Journal of Electronic Defense, 2001(9):20–26.

    Google Scholar 

  5. The Cooperative Engagement Capability[EB/OL]. [2010212205]. http://www.jhuap.edu/techdigest/td/td1604/aplteam.pdf.

  6. Hammad A Khan, Wasim Q Malik, David J Edwards, et al. Ultra Wideband Multiple-Input Multiple-Output Radar[C]//Proceedings of IEEE Radar Conf, 2005(1):900–904.

    Google Scholar 

  7. Baker C J, Hume A L. Netted Radar Sensing[J]. IEEE Aerosp. Electron. Syst. Mag., 2003, 18 (2):3–6.

    Google Scholar 

  8. D. W. Bliss, K. W. Forsythe. Multiple-Input Multiple-Output (MIMO) Radar and Imaging: Degrees of Freedom and Resolution[C]//Proc. 37th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, 2003 (1):54–59.

    Google Scholar 

  9. E Fishler, A Haimovich, R Blum, et al. MIMO Radar: An Idea Whose Time Has Come[C]//Proc. IEEE Radar Conf. April 2004:71–78.

    Google Scholar 

  10. Mcharg J C, Cuomo K M, Coutts S D, et al. Wideband Aperture Coherence Processing for Next Generation Radar[R]. MIT Lincoln Laboratory, 2004.

    Google Scholar 

  11. Coutts S, Cuomo K, Mcharg J, et al. Distributed Coherent Aperture Measurements for Next Generation BMD Radar[C]// IEEE Workshop on Sensor Array and Multichannel Signal Processing, 2006:390–393.

    Google Scholar 

  12. Eli Brookner. Phased-Array and Radar Astounding Breakthroughs - an Update[C]//2008 IEEE Radar Conference, 2008:1–6.

    Google Scholar 

  13. Hai Deng. Polyphase Code Design for Orthogonal Netted Radar Systems[J]. IEEE Trans on Signal Processing, 2004, 52 (11): 3126–3135.

    Google Scholar 

  14. GAO Hongwei, CAO Zhe, Lu Yaobing. Study and Demonstration of Distributed Array Coherent Synthesis Radar[C]//12th China Radar Conference, 2012:129.134.

    Google Scholar 

  15. CAO Zhe, CHAI Zhenhai, GAO Hongwei. Technology and Tests on Distributed Aperture Coherence-Synthesizing Radar[J]. Modern Defence Technology, 2012, 40(4):1–11.

    Google Scholar 

  16. JIANG Wei, WU Siliang, YUAN Haojuan. Coherent Detection for Frequency Diversity Separated Sub-Array Radar[J]. Transactions of Beijing Institute of Technology, 2010, 30(1):96–80.

    Google Scholar 

  17. CHEN Genhua, CHEN Baixiao, YANG Minglei. High Accuracy 2-D Direction Finding Using Interferometric-Like L-Shaped Array[J]. Systems Engineering and Electronics, 2012, 34(01):17–23.

    Google Scholar 

  18. CHEN Genhua, CHEN Baixiao, YANG Minglei. High Accuracy 2-D Angle Estimation Using Distributed Coherent Arrays[J]. Journal of Electronics & Information Technology, 2012, 34(11):2621–2627.

    Google Scholar 

  19. CHEN Baixiao. Modern Radar System Analysis and Design[M]. Xi’an: Xidian University Press, 2012.

    Google Scholar 

  20. CHEN Genhua. Study on High Accuracy Angle Estimation for Distributed Subarrays Antennas VHF Radar[D]. Xi’an: Xidian University, 2013.

    Google Scholar 

  21. Ma Peng, Zhang Ke, Hong Zhenqing, et al. Array Optimizing in Distributed Coherent MIMO Radar Based on Multi-Target Cramer-Rao Lower Bound[J]. Journal of Data Acquisition and Processing, 2012, 27(4):410–416.

    Google Scholar 

  22. Zhao Guanghui. Study on Sparse Array Meterwave Radar Based on SIAR[D]. Xi’an: Xidian University, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqi Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J. (2020). Cooperative Detection Metric Wave Radar Techniques. In: Advanced Metric Wave Radar. Springer, Singapore. https://doi.org/10.1007/978-981-10-7647-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7647-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7646-6

  • Online ISBN: 978-981-10-7647-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics