Skip to main content

Heterotrophic Microalgal Cultivation

  • Chapter
  • First Online:
Bioreactors for Microbial Biomass and Energy Conversion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Microalgae are being increasingly recognized as a promising solution for the search of sustainable energy resources and it has been successfully used as a feedstock for the production of liquid and gaseous biofuels . Photoautotrophic cultivation of microalgae in open ponds by utilizing sunlight and atmospheric carbon dioxide is commonly known as the most economic means for cost effective cultivation of microalgal biomass production, but is limited by optimal supply of sunlight and carbon dioxide, night biomass loss, low biomass productivity and contamination problems. Microalgae are capable of utilizing organic carbon sources , grow and metabolize in the absence of sunlight/dark conditions. Heterotrophic cultivation overcomes the light supply predicament of photoautotrophy, and in the present scenario it can be easily adapted for commercial scale production of microalgal biomass. In addition, heterotrophic cultivation is metabolically favorable for higher lipid accumulation and would be beneficial in biodiesel production. Current commercial production of polyunsaturated fatty acids are being dominated by heterotrophic marine algae. This chapter discusses in detail the heterotrophic metabolism of microalgae , the factors affecting heterotrophic cultivation and the commercial products of interest that can be obtained. The future perspectives for heterotrophic cultivation as a potential solution for obtaining large scale microalgal biomass is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ravindran B, Gupta KS, Cho WM, Kim KJ, Lee RS, Jeong KH, Lee JD, Choi HC (2016) Microalgae potential and multiple roles—current progress and future prospects—an overview. Sustainability 8(12):1215

    Article  Google Scholar 

  2. Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52:797–809

    Article  Google Scholar 

  3. Han SF, Jin WB, Tu RJ, Wu WM (2015) Biofuel production from microalgae as feedstock: current status and potential. Crit Rev Biotechnol 35(2):255–268

    Article  Google Scholar 

  4. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  Google Scholar 

  5. Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Bai FW, Chang JS (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    Article  Google Scholar 

  6. Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Borowitzka MA, Moheimani NR (eds) Algae for Biofuels and Energy. Springer Netherlands, Dordrecht

    Chapter  Google Scholar 

  7. Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res 49(8):3516–3526

    Article  Google Scholar 

  8. Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13(4):307–315

    Article  Google Scholar 

  9. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Article  Google Scholar 

  10. Chen GQ, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28(9):607–616

    Article  Google Scholar 

  11. Masojídek J, Torzillo G, Koblížek M (2013) Photosynthesis in microalgae. In: Handbook of microalgal culture. Wiley

    Chapter  Google Scholar 

  12. Peretó J (2014) Calvin-Benson Cycle. In: Amils R, Gargaud M, Cernicharo Quintanilla J et al (eds) Encyclopedia of astrobiology. Springer, Berlin, Heidelberg

    Google Scholar 

  13. Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292(5524):2073–2075

    Article  Google Scholar 

  14. Tanner W (2000) The Chlorella hexose/H+-symporters. Int Rev Cytol 200:101–141

    Article  Google Scholar 

  15. Haass D, Tanner W (1974) Regulation of hexose transport in Chlorella vulgaris: characteristics of induction and turnover. Plant Physiol 53(1):14–20

    Article  Google Scholar 

  16. Komor E, Tanner W (1974) The hexose-proton symport system of Chlorella vulgaris. Specificity, stoichiometry and energetics of sugar-induced proton uptake. Eur J Biochem 44(1):219–223

    Article  Google Scholar 

  17. Komor E, Schobert C, Cho BH (1985) Sugar specificity and sugar-proton interaction for the hexose-proton-symport system of Chlorella. Eur J Biochem 146(3):649–656

    Article  Google Scholar 

  18. Cho BH, Sauer N, Komor E, Tanner W (1981) Glucose induces two amino acid transport systems in Chlorella. Proc Natl Acad Sci USA 78(6):3591–3594

    Article  Google Scholar 

  19. Bennett ME, Hobbie JE (1972) The uptake of glucose by Chlamydomonas sp.12. J Phycol 8(4):392–398

    Google Scholar 

  20. Morales SD, Tinoco VR, Kyndt J, Martinez A (2013) Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnol Biofuels 6(1):100

    Article  Google Scholar 

  21. Zheng Y, Yu X, Li T, Xiong X, Chen S (2014) Induction of D-xylose uptake and expression of NAD(P)H-linked xylose reductase and NADP+-linked xylitol dehydrogenase in the oleaginous microalga Chlorella sorokiniana. Biotechnol Biofuels 7:125

    Google Scholar 

  22. Gao C, Wang Y, Shen Y, Yan D, He X, Dai J, Wu Q (2014) Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genomics 15:582

    Article  Google Scholar 

  23. Neilson AH, Lewin RA (1974) The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13(3):227–264

    Article  Google Scholar 

  24. Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 28(3):335–352

    Article  Google Scholar 

  25. Mishra G (2015) Polyunsaturated fatty acids from algae. In: Sahoo D, Seckbach J (eds) The algae world. Springer Netherlands, Dordrecht

    Google Scholar 

  26. Hahn HB, Wahlbom CF, Gardonyi M, van Zyl WH, Cordero Otero RR, Jonsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng/Biotechnol 73:53–84

    Article  Google Scholar 

  27. Smith AJ, London J, Stanier RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol 94(4):972–983

    Google Scholar 

  28. Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12(6):776–793

    Article  Google Scholar 

  29. Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3:4

    Article  Google Scholar 

  30. Chen X, Schreiber K, Appel J, Makowka A, Fahnrich B, Roettger M, Hajirezaei MR, Sonnichsen FD, Schonheit P, Martin WF, Gutekunst K (2016) The Entner-Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. Proc Natl Acad Sci USA 113(19):5441–5446

    Article  Google Scholar 

  31. Fabris M, Matthijs M, Rombauts S, Vyverman W, Goossens A, Baart GJ (2012) The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway. Plant J 70(6):1004–1014

    Article  Google Scholar 

  32. Klein U (1986) Compartmentation of glycolysis and of the oxidative pentose-phosphate pathway in Chlamydomonas reinhardii. Planta 167(1):81–86

    Article  MathSciNet  Google Scholar 

  33. Hildebrand M, Abbriano RM, Polle JEW, Traller JC, Trentacoste EM, Smith SR, Davis AK (2013) Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production. Curr Opin Chem Biol 17(3):506–514

    Article  Google Scholar 

  34. Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6(2):87–102

    Article  Google Scholar 

  35. Fischer K (2011) The import and export business in plastids: transport processes across the inner envelope membrane. Plant Physiol 155(4):1511

    Article  Google Scholar 

  36. Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226(5):1075–1086

    Article  Google Scholar 

  37. Raven JA (1976) The quantitative role of ‘Dark’ respiratory processes in heterotrophic and photolithotrophic plant growth. Ann Bot 40(3):587–602

    Article  Google Scholar 

  38. Geider RJ, Osborne BA (1989) Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol 112(3):327–341

    Article  Google Scholar 

  39. Johnson X, Alric J (2012) Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii. J Biol Chem 287(31):26445–26452

    Article  Google Scholar 

  40. Zhang S, Bryant DA (2015) Biochemical validation of the glyoxylate cycle in the Cyanobacterium Chlorogloeopsis fritschii strain PCC 9212. J Biol Chem 290(22):14019–14030

    Article  Google Scholar 

  41. Knoop H, Grundel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R (2013) Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol 9(6):e1003081

    Article  Google Scholar 

  42. Plancke C, Vigeolas H, Hohner R, Roberty S, Emonds AB, Larosa V, Willamme R, Duby F, Onga Dhali D, Thonart P, Hiligsmann S, Franck F, Eppe G, Cardol P, Hippler M, Remacle C (2014) Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. Plant J 77(3):404–417

    Article  Google Scholar 

  43. Grobbelaar JU (2007) Algal nutrition—mineral nutrition. In: Handbook of microalgal culture. Blackwell Publishing Ltd

    Google Scholar 

  44. Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–202

    Article  Google Scholar 

  45. Liu J, Huang J, Fan KW, Jiang Y, Zhong Y, Sun Z, Chen F (2010) Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol 101(22):8658–8663

    Article  Google Scholar 

  46. Ren HY, Liu BF, Ma C, Zhao L, Ren NQ (2013) A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels 6(1):143

    Article  Google Scholar 

  47. Yan D, Lu Y, Chen YF, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102(11):6487–6493

    Article  Google Scholar 

  48. Schmidt RA, Wiebe MG, Eriksen NT (2005) Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. Biotechnol Bioeng 90(1):77–84

    Article  Google Scholar 

  49. Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49(1):72–76

    Article  Google Scholar 

  50. Tanoi T, Kawachi M, Watanabe MM (2011) Effects of carbon source on growth and morphology of Botryococcus braunii. J Appl Phycol 23(1):25–33

    Article  Google Scholar 

  51. Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19(6):507–509

    Article  Google Scholar 

  52. de Swaaf ME, Pronk JT, Sijtsma L (2003) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61(1):40–43

    Article  Google Scholar 

  53. Liu J, Huang J, Jiang Y, Chen F (2012) Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol 107:393–398

    Article  Google Scholar 

  54. Li Y, Huang J, Sandmann G, Chen F (2008) Glucose sensing and the mitochondrial alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae). Planta 228(5):735–743

    Article  Google Scholar 

  55. Li T, Liu YH, Lu FP, Jiang Y (2014) Effects of glucose assimilation on lutein and chlorophyll biosyntheses in the green alga Chlorella pyrenoidosa. In: Zhang T-C, Ouyang P, Kaplan S, Skarnes B (eds) Proceedings of the 2012 international conference on applied biotechnology (ICAB 2012), vol 2. Springer, Berlin, Heidelberg

    Google Scholar 

  56. Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35(5):431–441

    Article  Google Scholar 

  57. Morales SD, Tinoco VR, Caro BMA, Martinez A (2014) Culturing Neochloris oleoabundans microalga in a nitrogen-limited, heterotrophic fed-batch system to enhance lipid and carbohydrate accumulation. Algal Res 5:61–69

    Article  Google Scholar 

  58. Cerón GMC, Macías SMD, Sánchez MA, García CF, Molina GE (2013) A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Appl Energy 103:341–349

    Article  Google Scholar 

  59. Espinosa GI, Parashar A, Bressler DC (2014) Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol 155:170–176

    Article  Google Scholar 

  60. Cheng Y, Lu Y, Gao C, Wu Q (2009) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuels 23(8):4166–4173

    Article  Google Scholar 

  61. Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87(3):756–761

    Article  Google Scholar 

  62. Lu Y, Ding Y, Wu Q (2011) Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. J Appl Phycol 23(1):115–121

    Article  Google Scholar 

  63. Isleten Hosoglu M, Gultepe I, Elibol M (2012) Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence based method for quantification of its neutral lipid content. Biochem Eng J 61:11–19

    Article  Google Scholar 

  64. Chen YH, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett 33(10):1973–1983

    Article  Google Scholar 

  65. Cheng Y, Zhou W, Gao C, Lan K, Gao Y, Wu Q (2009) Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84(5):777–781

    Article  Google Scholar 

  66. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78(1):29–36

    Article  Google Scholar 

  67. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507

    Article  Google Scholar 

  68. Shen XF, Chu FF, Lam PK, Zeng RJ (2015) Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Res 81:294–300

    Article  Google Scholar 

  69. Zheng H, Gao Z, Yin F, Ji X, Huang H (2012) Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Bioresour Technol 117:1–6

    Article  Google Scholar 

  70. Zheng H, Ma X, Gao Z, Wan Y, Min M, Zhou W, Li Y, Liu Y, Huang H, Chen P, Ruan R (2015) Lipid production of heterotrophic Chlorella sp. from hydrolysate mixtures of lipid-extracted microalgal biomass residues and molasses. Appl Biochem Biotechnol 177(3):662–674

    Article  Google Scholar 

  71. Mu J, Li S, Chen D, Xu H, Han F, Feng B, Li Y (2015) Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides. Bioresour Technol 185:99–105

    Article  Google Scholar 

  72. Shen XF, Liu JJ, Chu FF, Lam PKS, Zeng RJ (2015) Enhancement of FAME productivity of Scenedesmus obliquus by combining nitrogen deficiency with sufficient phosphorus supply in heterotrophic cultivation. Appl Energy 158:348–354

    Article  Google Scholar 

  73. Shen XF, Liu JJ, Chauhan AS, Hu H, Ma LL, Lam PKS, Zeng RJ (2016) Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. Algal Res 17:261–267

    Article  Google Scholar 

  74. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049

    Article  Google Scholar 

  75. Wang Y, Chen T, Qin S (2012) Heterotrophic cultivation of Chlorella kessleri for fatty acids production by carbon and nitrogen supplements. Biomass Bioenergy 47:402–409

    Article  Google Scholar 

  76. Zhao Y, Li D, Ding K, Che R, Xu JW, Zhao P, Li T, Ma H, Yu X (2016) Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1 through heterotrophic cultivation and photo-chemical modulator induction. Bioresour Technol 211:669–676

    Article  Google Scholar 

  77. Fan KW, Chen F, Jones EB, Vrijmoed LL (2001) Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential of thraustochytrids. J Ind Microbiol Biotechnol 27(4):199–202

    Article  Google Scholar 

  78. Vazhappilly R, Chen F (1998) Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Am Oil Chem Soc 75(3):393–397

    Article  Google Scholar 

  79. Fang X, Wei C, Zhao LC, Fan O (2004) Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J Appl Phycol 16(6):499–503

    Article  Google Scholar 

  80. Marudhupandi T, Sathishkumar R, Kumar TTA (2016) Heterotrophic cultivation of Nannochloropsis salina for enhancing biomass and lipid production. Biotechnol Rep 10:8–16

    Article  Google Scholar 

  81. Tan CK, Johns MR (1996) Screening of diatoms for heterotrophic eicosapentaenoic acid production. J Appl Phycol 8(1):59–64

    Article  Google Scholar 

  82. Wen ZY, Chen F (2002) Perfusion culture of the diatom Nitzschia laevis for ultra-high yield of eicosapentaenoic acid. Process Biochem 38(4):523–529

    Article  Google Scholar 

  83. Gong Y, Liu J, Jiang M, Liang Z, Jin H, Hu X, Wan X, Hu C (2015) Improvement of omega-3 docosahexaenoic acid production by marine dinoflagellate crypthecodinium cohnii using rapeseed meal hydrolysate and waste molasses as feedstock. PLoS One 10(5):e0125368

    Article  Google Scholar 

  84. De Swaaf ME, Sijtsma L, Pronk JT (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81(6):666–672

    Article  Google Scholar 

  85. Mendes A, Guerra P, Madeira V, Ruano F, Lopes da Silva T, Reis A (2007) Study of docosahexaenoic acid production by the heterotrophic microalga Crypthecodinium cohnii CCMP 316 using carob pulp as a promising carbon source. World J Microbiol Biotechnol 23(9):1209–1215

    Article  Google Scholar 

  86. Yamasaki T, Aki T, Shinozaki M, Taguchi M, Kawamoto S, Ono K (2006) Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J Biosci Bioeng 102(4):323–327

    Article  Google Scholar 

  87. Unagul P, Assantachai C, Phadungruengluij S, Suphantharika M, Tanticharoen M, Verduyn C (2007) Coconut water as a medium additive for the production of docosahexaenoic acid (C22:6 n3) by Schizochytrium mangrovei Sk-02. Bioresour Technol 98(2):281–287

    Article  Google Scholar 

  88. Ethier S, Woisard K, Vaughan D, Wen Z (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol 102(1):88–93

    Article  Google Scholar 

  89. Lian M, Huang H, Ren L, Ji X, Zhu J, Jin L (2010) Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay. Appl Biochem Biotechnol 162(4):935–941

    Article  Google Scholar 

  90. Quilodrán B, Hinzpeter I, Hormazabal E, Quiroz A, Shene C (2010) Docosahexaenoic acid (C22:6n−3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1 a native strain with high similitude to Ulkenia sp.: evaluation of liquid residues from food industry as nutrient sources. Enzyme Microb Technol 47(1):24–30

    Article  Google Scholar 

  91. Hong WK, Rairakhwada D, Seo PS, Park SY, Hur BK, Kim CH, Seo JW (2011) Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101. Appl Biochem Biotechnol 164(8):1468–1480

    Article  Google Scholar 

  92. Manikan V, Nazir MYM, Kalil MS, Isa MHM, Kader AJA, Yusoff WMW, Hamid AA (2015) A new strain of docosahexaenoic acid producing microalga from Malaysian coastal waters. Algal Res 9:40–47

    Article  Google Scholar 

  93. Manikan V, Kalil MS, Hamid AA (2015) Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid. Sci Rep 5:8611

    Article  Google Scholar 

  94. Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72(6):1161–1169

    Article  Google Scholar 

  95. Shi XM, Chen F, Yuan JP, Chen H (1997) Heterotrophic production of lutein by selected Chlorella strains. J Appl Phycol 9(5):445–450

    Article  Google Scholar 

  96. Shi X, Zhang X, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27(3–5):312–318

    Article  Google Scholar 

  97. Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18(4):723–727

    Article  Google Scholar 

  98. Wu Z, Wu S, Shi X (2007) Supercritical fluid extraction and determination of lutein in heterotrophically cultivated Chlorella pyrenoidosa. J Food Process Eng 30(2):174–185

    Article  Google Scholar 

  99. Wu ZY, Qu CB, Shi XM (2009) Biochemical system analysis of lutein production by heterotrophic Chlorella pyrenoidosa in a fermentor. Food Technol Biotechnol 47(4):450–455

    Google Scholar 

  100. Wei D, Chen F, Chen G, Zhang X, Liu L, Zhang H (2008) Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci China Ser C Life Sci 51(12):1088–1093

    Article  Google Scholar 

  101. Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40(2):733–738

    Article  Google Scholar 

  102. Ip PF, Chen F (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40(11):3491–3496

    Article  Google Scholar 

  103. Ip PF, Chen F (2005) Peroxynitrite and nitryl chloride enhance astaxanthin production by the green microalga Chlorella zofingiensis in heterotrophic culture. Process Biochem 40(11):3595–3599

    Article  Google Scholar 

  104. Liu J, Sun Z, Zhong Y, Gerken H, Huang J, Chen F (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25(5):1447–1456

    Article  Google Scholar 

  105. Ma RYN, Chen F (2001) Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem 36(12):1175–1179

    Article  Google Scholar 

  106. Sloth JK, Wiebe MG, Eriksen NT (2006) Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme Microb Technol 38(1):168–175

    Article  Google Scholar 

  107. Sloth JK, Jensen HC, Pleissner D, Eriksen NT (2017) Growth and phycocyanin synthesis in the heterotrophic microalga Galdieria sulphuraria on substrates made of food waste from restaurants and bakeries. Bioresour Technol 238:296–305

    Article  Google Scholar 

  108. Sorensen L, Hantke A, Eriksen NT (2013) Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. J Sci Food Agric 93(12):2933–2938

    Article  Google Scholar 

  109. Fernandez E, Galvan A (2007) Inorganic nitrogen assimilation in Chlamydomonas. J Exp Bot 58(9):2279–2287

    Article  Google Scholar 

  110. Inokuchi R, Kuma KI, Miyata T, Okada M (2002) Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiol Plant 116(1):1–11

    Article  Google Scholar 

  111. Patil KP, Gogate PR (2015) Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chem Eng J 268:187–196

    Article  Google Scholar 

  112. Lowrey J, Brooks MS, McGinn PJ (2015) Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges—a critical review. J Appl Phycol 27(4):1485–1498

    Article  Google Scholar 

  113. Wang Y, Guo W, Yen HW, Ho SH, Lo YC, Cheng CL, Ren N, Chang JS (2015) Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresour Technol 198:619–625

    Article  Google Scholar 

  114. Kim S, Lee Y, Hwang SJ (2013) Removal of nitrogen and phosphorus by Chlorella sorokiniana cultured heterotrophically in ammonia and nitrate. Int Biodeterior Biodegrad 85:511–516

    Article  Google Scholar 

  115. Perez GO, Bashan Y, Esther Puente M (2011) Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. J Phycol 47(1):190–199

    Article  Google Scholar 

  116. Garcia OF, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27(2):153–176

    Article  Google Scholar 

  117. Pahl SL, Lewis DM, Chen F, King KD (2010) Growth dynamics and the proximate biochemical composition and fatty acid profile of the heterotrophically grown diatom Cyclotella cryptica. J Appl Phycol 22(2):165–171

    Article  Google Scholar 

  118. Meireles DSA, Vieira KR, Basso SR, Meireles DSA, Queiroz MI, Queiroz ZL, Jacob LE (2017) Heterotrophic cultivation of Cyanobacteria: study of effect of exogenous sources of organic carbon, absolute amount of nutrients, and stirring speed on biomass and lipid productivity. Front Bioeng Biotechnol 5:12

    Google Scholar 

  119. Singhasuwan S, Choorit W, Sirisansaneeyakul S, Kokkaew N, Chisti Y (2015) Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production. J Biotechnol 216:169–177

    Article  Google Scholar 

  120. Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3(3):203–209

    Article  Google Scholar 

  121. Chang G, Gao N, Tian G, Wu Q, Chang M, Wang X (2013) Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour Technol 142:400–406

    Article  Google Scholar 

  122. Qu L, Ren LJ, Huang H (2013) Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient. Biochem Eng J 77:82–87

    Article  Google Scholar 

  123. Jakobsen AN, Aasen IM, Josefsen KD, Strom AR (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol 80(2):297–306

    Article  Google Scholar 

  124. Qu L, Ji XJ, Ren LJ, Nie ZK, Feng Y, Wu WJ, Ouyang PK, Huang H (2011) Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient. Lett Appl Microbiol 52(1):22–27

    Article  Google Scholar 

  125. Ren LJ, Ji XJ, Huang H, Qu L, Feng Y, Tong QQ, Ouyang PK (2010) Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl Microbiol Biotechnol 87(5):1649–1656

    Article  Google Scholar 

  126. Chi Z, Liu Y, Frear C, Chen S (2009) Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol 81(6):1141–1148

    Article  Google Scholar 

  127. Sattur AP, Karanth NG (1989) Production of microbial lipids: II. Influence of C/N ratio—model prediction. Biotechnol Bioeng 34(6):868–871

    Article  Google Scholar 

  128. Silaban A, Bai R, Gutierrez WMT, Negulescu II, Rusch KA (2014) Effect of organic carbon, C:N ratio and light on the growth and lipid productivity of microalgae/cyanobacteria coculture. Eng Life Sci 14(1):47–56

    Article  Google Scholar 

  129. Shi XM, Liu HJ, Zhang XW, Chen F (1999) Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem 34(4):341–347

    Article  Google Scholar 

  130. Zhu L, Zhang X, Ji L, Song X, Kuang C (2007) Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochem 42(2):210–214

    Article  Google Scholar 

  131. Cao J, Yuan H, Li B, Yang J (2014) Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresour Technol 152:177–184

    Article  Google Scholar 

  132. Chen GQ, Jiang Y, Chen F (2008) Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chem 109(1):88–94

    Article  MathSciNet  Google Scholar 

  133. Shi X, Wu Z, Chen F (2006) Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Mol Nutr Food Res 50(8):763–768

    Article  Google Scholar 

  134. Chen GQ, Jiang Y, Chen F (2008) Salt-induced alterations in lipid composition of diatom Nitzschia laevis (bacillariophyceae) under heterotrophic culture condition. J Phycol 44(5):1309–1314

    Article  Google Scholar 

  135. Wang T, Ge H, Liu T, Tian X, Wang Z, Guo M, Chu J, Zhuang Y (2016) Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration. J Biotechnol 228:18–27

    Article  Google Scholar 

  136. Heredia AT, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162(7):1978–1995

    Article  Google Scholar 

  137. Sarada R, Tripathi U, Ravishankar GA (2002) Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem 37(6):623–627

    Article  Google Scholar 

  138. Jiang Y, Chen F (2000) Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochem 35(10):1205–1209

    Article  Google Scholar 

  139. Wu ST, Yu ST, Lin LP (2005) Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochem 40(9):3103–3108

    Article  Google Scholar 

  140. Kumari P, Kumar M, Reddy CRK, Jha B (2013) Algal lipids, fatty acids and sterols Domínguez, Herminia. In: Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing

    Chapter  Google Scholar 

  141. Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32(8):1476–1493

    Article  Google Scholar 

  142. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  Google Scholar 

  143. Vitova M, Bisova K, Kawano S, Zachleder V (2015) Accumulation of energy reserves in algae: from cell cycles to biotechnological applications. Biotechnol Adv 33:1204–1218

    Article  Google Scholar 

  144. Slocombe S, Zhang Q, Ross M, Anderson A, Thomas NJ, Lapresa Á, Rad MC, Campbell C, Black K, Stanley M, Day J (2015) Unlocking nature’s treasure-chest: screening for oleaginous algae. Sci Rep 9:9844

    Google Scholar 

  145. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5

    Article  Google Scholar 

  146. García López, de Lomana A, Schäuble S, Valenzuela J, Imam S, Carter W, Bilgin DD, Yohn CB, Turkarslan S, Reiss DJ, Orellana MV, Price ND, Baliga NS (2015) Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii. Biotechnol Biofuels 8(1):207

    Article  Google Scholar 

  147. Subramanian S, Barry AN, Pieris S, Sayre RT (2013) Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: implications for biomass and biofuel production. Biotechnol Biofuels 6(1):150

    Article  Google Scholar 

  148. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771

    Article  Google Scholar 

  149. Tabernero A, Martín del Valle EM, Galán MA (2012) Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: scale-up and economics. Biochem Eng J 63:104–115

    Article  Google Scholar 

  150. Lohrey C, Kochergin V (2012) Biodiesel production from microalgae: co-location with sugar mills. Bioresour Technol 108:76–82

    Article  Google Scholar 

  151. Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels 23(10):5179–5183

    Article  Google Scholar 

  152. Jia Z, Liu Y, Daroch M, Geng S, Cheng JJ (2014) Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production. Appl Biochem Biotechnol 173(7):1667–1679

    Article  Google Scholar 

  153. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193

    Article  Google Scholar 

  154. Özçimen D, İnan B (2015) An overview of bioethanol production from algae. In: Biernat K (ed) Biofuels-status and perspective. InTech, Rijeka

    Google Scholar 

  155. Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol: CB 19(2):169–175

    Article  Google Scholar 

  156. Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    Article  Google Scholar 

  157. Wei N, Quarterman J, Jin YS (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31(2):70–77

    Article  Google Scholar 

  158. Nguyen CM, Kim JS, Hwang HJ, Park MS, Choi GJ, Choi YH, Jang KS, Kim JC (2012) Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour Technol 110:552–559

    Article  Google Scholar 

  159. Cheng D, Li D, Yuan Y, Zhou L, Li X, Wu T, Wang L, Zhao Q, Wei W, Sun Y (2017) Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnol Biofuels 10(1):75

    Article  Google Scholar 

  160. Tan KW, Lin H, Shen H, Lee YK (2016) Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta. Sci Rep 6:37235

    Article  Google Scholar 

  161. Griffiths DJ (1965) The accumulation of carbohydrate in Chlorella vulgaris under heterotrophic conditions. Ann Bot 29(3):347–357

    Article  Google Scholar 

  162. Di Caprio F, Visca A, Altimari P, Toro L, Masciocchi B, Iaquaniello G, Pagnanelli F (2016) Two stage process of microalgae cultivation for starch and carotenoid production. In: Chemical engineering transactions. Italian Association of Chemical Engineering-AIDIC

    Google Scholar 

  163. Choix FJ, de Bashan LE, Bashan Y (2012) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella sp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Enzyme Microb Technol 51(5):300–309

    Article  Google Scholar 

  164. Swaaf M, Grobben G, Eggink G, Rijk T, Meer P, Sijtsma L (2001) Characterisation of extracellular polysaccharides produced by Crypthecodinium cohnii. Appl Microbiol Biotechnol 57(3):395–400

    Article  Google Scholar 

  165. Wu N, Li Y, Lan CQ (2011) Production and rheological studies of microalgal extracellular biopolymer from lactose using the green alga Neochloris oleoabundans. J Polym Environ 19(4):935–942

    Article  Google Scholar 

  166. Liu L, Pohnert G, Wei D (2016) Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs 14(10):191

    Article  Google Scholar 

  167. Trabelsi L, Ben Ouada H, Zili F, Mazhoud N, Ammar J (2013) Evaluation of Arthrospira platensis extracellular polymeric substances production in photoautotrophic, heterotrophic and mixotrophic conditions. Folia Microbiol 58(1):39–45

    Article  Google Scholar 

  168. Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:546

    Article  Google Scholar 

  169. Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1(4):420–439

    Article  Google Scholar 

  170. Ryckebosch E, Bruneel C, Muylaert K, Foubert I (2012) Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technol 24(6):128–130

    Article  Google Scholar 

  171. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294(5548):1871–1875

    Article  Google Scholar 

  172. Das UN (2008) Can essential fatty acids reduce the burden of diseases? Lipids Health Dis 7:9

    Article  Google Scholar 

  173. Kaur N, Chugh V, Gupta AK (2014) Essential fatty acids as functional components of foods- a review. J Food Sci Technol 51(10):2289–2303

    Article  Google Scholar 

  174. Bigogno C, Khozin GI, Cohen Z (2002) Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (Trebuxiophyceae, Chlorophyta). Phytochemistry 60(2):135–143

    Article  Google Scholar 

  175. Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10(6):631–640

    Article  Google Scholar 

  176. Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40(12):3627–3652

    Article  Google Scholar 

  177. Martins DA, Custódio L, Barreira L, Pereira H, Ben HR, Varela J, Abu SKM (2013) Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs 11(7):2259–2281

    Article  Google Scholar 

  178. Varela JC, Pereira H, Vila M, Leon R (2015) Production of carotenoids by microalgae: achievements and challenges. Photosynth Res 125(3):423–436

    Article  Google Scholar 

  179. Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J: Off Publ Fed Am Soc Exp Biol 9(15):1551–1558

    Article  Google Scholar 

  180. Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34(8):1396–1412

    Article  Google Scholar 

  181. Spolaore P, Joannis CC, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  Google Scholar 

  182. Lim KC, Yusoff FM, Shariff M, Kamarudin MS (2017) Astaxanthin as feed supplement in aquatic animals. Rev Aquac 0:1–36

    Google Scholar 

  183. Lin JH, Lee DJ, Chang JS (2015) Lutein production from biomass: marigold flowers versus microalgae. Bioresour Technol 184:421–428

    Article  Google Scholar 

  184. Kobayashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Ferment Bioeng 71(5):335–339

    Article  Google Scholar 

  185. Choi YE, Yun YS, Park JM (2002) Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol Prog 18(6):1170–1175

    Article  Google Scholar 

  186. Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential. Mar Drugs 12(6):3487–3515

    Article  Google Scholar 

  187. Zheng YW, Chun BQ, Xian MS (2009) Biochemical system analysis of lutein production by heterotrophic Chlorella pyrenoidosa in a fermentor. Food Technol Biotechnol 47(4):450–455

    Google Scholar 

  188. Chen CY, Ho SH, Liu CC, Chang JS (2017) Enhancing lutein production with Chlorella sorokiniana Mb-1 by optimizing acetate and nitrate concentrations under mixotrophic growth. J Taiwan Inst Chem Eng 79:88–96

    Article  Google Scholar 

  189. Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H (2011) Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar Drugs 9(9):1607–1624

    Article  Google Scholar 

  190. Yin NMR, Chen F (2001) Induction of astaxanthin formation by reactive oxygen species in mixotrophic culture of Chlorococcum sp. Biotechnol Lett 23(7):519–523

    Article  Google Scholar 

  191. Eriksen NT (2008) Production of phycocyanin–a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80(1):1–14

    Article  Google Scholar 

  192. Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36(4):633–638

    Google Scholar 

  193. Theriault RJ (1965) Heterotrophic growth and production of xanthophylls by Chlorella pyrenoidosa. Appl Microbiol 13:402–416

    Google Scholar 

  194. Behrens PW (2005) Photobioreactor and fermentors: the light and the dark sides of the growing algae. In: Algal culturing techniques, pp 189–204

    Google Scholar 

  195. Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91(1):31–46

    Article  Google Scholar 

  196. Graverholt OS, Eriksen NT (2007) Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77(1):69–75

    Article  Google Scholar 

  197. Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol 2011:8

    Google Scholar 

  198. Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9(5):403–411

    Article  Google Scholar 

  199. Day JD, Edwards AP, Rodgers GA (1991) Development of an industrial-scale process for the heterotrophic production of a micro-algal mollusc feed. Bioresour Technol 38(2):245–249

    Article  Google Scholar 

  200. Barclay W, Weaver C, Metz J, Hansen J (2010) Development of a docosahexaenoic acid production technology using schizochytrium: historical perspective and update. In: Single cell oils, 2nd edn. AOCS Press

    Chapter  Google Scholar 

  201. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702

    Article  Google Scholar 

  202. Lee YK (2007) Algal nutrition—heterotrophic carbon nutrition. In: Handbook of microalgal culture. Blackwell Publishing Ltd

    Google Scholar 

  203. Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J Appl Phycol 6(2):131–141

    Article  Google Scholar 

  204. Mühling M, Belay A, Whitton BA (2005) Screening Arthrospira (Spirulina) strains for heterotrophy. J Appl Phycol 17(2):129–135

    Article  Google Scholar 

  205. Tian YZ, Yin HW, Lin LZ, Xiao XW, Hong YH (2014) Screening heterotrophic microalgal strains by using the biolog method for biofuel production from organic wastewater. Algal Res 6:175–179

    Article  Google Scholar 

  206. Abeliovich A, Weisman D (1978) Role of heterotrophic nutrition in growth of the alga Scenedesmus obliquus in high-rate oxidation ponds. Appl Environ Microbiol 35(1):32–37

    Google Scholar 

  207. Schilling S, Oesterhelt C (2007) Structurally reduced monosaccharide transporters in an evolutionarily conserved red alga. Biochem J 406(2):325–331

    Article  Google Scholar 

  208. Barbier G, Oesterhelt C, Larson MD, Halgren RG, Wilkerson C, Garavito RM, Benning C, Weber AP (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 137(2):460–474

    Article  Google Scholar 

  209. Lung YT, Tan CH, Show PL, Ling TC, Lan JCW, Lam HL, Chang JS (2016) Docosahexaenoic acid production from crude glycerol by Schizochytrium limacinum SR21. Clean Technol Environ Policy 18(7):2209–2216

    Article  Google Scholar 

  210. Liang Y, Sarkany N, Cui Y, Yesuf J, Trushenski J, Blackburn JW (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour Technol 101(10):3623–3627

    Article  Google Scholar 

  211. Semple KT (1998) Heterotrophic growth on phenolic mixtures by Ochromonas danica. Res Microbiol 149(1):65–72

    Article  Google Scholar 

  212. Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101(8):2623–2628

    Article  Google Scholar 

  213. Jones A, Rhodes ME, Evans SC (1973) The use of antibiotics to obtain axenic cultures of algae. Br Phycol J 8(2):185–196

    Article  Google Scholar 

  214. Han J, Wang S, Zhang L, Yang G, Zhao L, Pan K (2016) A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations. Chin J Oceanol Limnol 34(1):79–85

    Article  Google Scholar 

  215. Choi GG, Bae MS, Ahn CY, Oh HM (2008) Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol Lett 30(1):87–92

    Article  Google Scholar 

  216. Cho JY, Choi JS, Kong IS, Park SI, Kerr RG, Hong YK (2002) A procedure for axenic isolation of the marine microalga Isochrysis galbana from heavily contaminated mass cultures. J Appl Phycol 14(5):385–390

    Article  Google Scholar 

  217. Azma M, Mohamad R, Abdul Rahim R, Ariff A (2010) Improved protocol for the preparation of tetraselmis suecica axenic culture and adaptation to heterotrophic cultivation. Open Biotechnol J 4:36–46

    Article  Google Scholar 

  218. Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol 131(1):27–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo-shu Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagarajan, D., Lee, DJ., Chang, Js. (2018). Heterotrophic Microalgal Cultivation. In: Liao, Q., Chang, Js., Herrmann, C., Xia, A. (eds) Bioreactors for Microbial Biomass and Energy Conversion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7677-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7677-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7676-3

  • Online ISBN: 978-981-10-7677-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics