Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 278 Accesses

Abstract

Particle accelerator, in which charged particles are propelled by electromagnetic field, is a powerful tool for fundamental and applied researches in various subjects. Since its birth nearly one century ago, multiple types of accelerators with different principles have been successfully developed and over 30,000 units are now in operation worldwide. For electron accelerators, the most common type applies the radio-frequency linear accelerating structure. The accelerating gradient, defined as the energy gain of particles traveling per unit length, is an essential parameter to determine the performance of an rf linear accelerating structure. Driven by the recent requirement of next generation electron-positron collider with a collision energy of TeV scale, extensive researches are being conducted to push the accelerating gradient over 100 MV/m, nearly threefold higher than that obtained with state-of-art technology. Such high accelerating gradient will also benefit other applications including free electron lasers (FEL), photocathode rf guns, and industrial/medical accelerators. However, its realization is mainly limited by rf breakdown, an extremely complicated phenomenon which includes various coupled physical procedures. rf breakdown is generally considered to be triggered by field emission from surface exposed to high electric field. This chapter introduces the application of high gradient rf linear accelerating structure, the rf breakdown phenomenon, and field emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CLIC conceptual design report (2012) Technical report, CERN

    Google Scholar 

  2. The International Linear Collider technical design report (2013) Technical report, ILC

    Google Scholar 

  3. Zha H (2013) Design and experiment of CLIC Choke-mode accelerating structure. Ph.D. thesis, Tsinghua University

    Google Scholar 

  4. Zha H, Grudiev A (2016) Design and optimization of Compact Linear Collider main linac accelerating structure. Phys Rev Accel Beams 19:111003

    Google Scholar 

  5. Zha H, Latina A, Grudiev A et al (2016) Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure. Phys Rev Accel Beams 19:011001

    Google Scholar 

  6. Zha H, Shi J, Chen H et al (2012) Choke-mode damped structure design for the Compact Linear Collider main linac. Phys Rev ST Accel Beams 15:122003

    Google Scholar 

  7. Zha H, Jing C, Qiu J et al (2016) Beam-induced wakefield observation in X-band choke-mode cavities. Phys Rev Accel Beams 19:081001

    Google Scholar 

  8. Khan V (2011) A damped and detuned accelerating structure for the main linacs of the compact linear collider. Ph.D. thesis, The University of Manchester

    Google Scholar 

  9. Jones R (2009) Wakefield suppression in high gradient linacs for lepton linear colliders. Phys Rev ST Accel Beams 12:104801

    Google Scholar 

  10. Zha H, Grudiev A (2017) Design of the Compact Linear Collider main linac accelerating structure made from two halves. Phys Rev Accel Beams 20:042001

    Google Scholar 

  11. Solodko A (2017) CLIC test and prototype structure production. In: Proceedings of HG2017, Valencia, Spain

    Google Scholar 

  12. Fang W (2012) C-band high-gradient accelerating structure for compact X-ray free electron lasers. Ph.D. thesis, Shanghai Institute of Applied Physics, CAS

    Google Scholar 

  13. Allaria E, Callegari C, Cocco D et al (2010) The FERMI@Elettra free-electron-laser source for coherent x-ray physics: Photon properties, beam transport system and applications New J Phys 12:075002

    Google Scholar 

  14. Emma P, Akre R, Arthur J et al (2010) First lasing and operation of an ångstrom-wavelength free-electron laser. Nat Photon 4:641–647

    Google Scholar 

  15. Fermi@Elettra conceptual design report (2007) Technical report, Sincrotrone Trieste S.C.p.A

    Google Scholar 

  16. Tanaka H, Aoyagi H, Asaka T et al (2012) A compact X-ray free-electron laser emitting in the sub-ångström region. Nat Photon 6:540–544

    Google Scholar 

  17. Inagaki T, Kondo C, Maesaka H et al (2014) High-gradient C-band linac for a compact x-ray free-electron laser facility. Phys Rev ST Accel Beams 17:080702

    Google Scholar 

  18. SwissFEL conceptual design report (2010) Technical report, PSI

    Google Scholar 

  19. Zhao Z, Chen S, Yu L, et al (2011) Shanghai soft X-ray free electron laser test facility. In: Proceedings of IPAC2011, San Sebastián, Spain

    Google Scholar 

  20. Fang W, Gu Q, Tan J, et al (2016) Progress in C-band and X-band technology at SINAP. In: Proceedings of CLICWorkshop 2016, Geneva, Switzerland

    Google Scholar 

  21. Kang H, Kim K, Ko I (2014) Current status of PAL-XFEL project. In: Proceedings of IPAC2014, Dresden, Germany

    Google Scholar 

  22. Aksoy A, Yavaş Ö, Schulte D, et al (2014) Conceptual design of an X-FEL facility using CLIC X-band accelerating structure. In: Proceedings of IPAC2014, Dresden, Germany

    Google Scholar 

  23. Adolphsen C, Huang Z, Bane K, et al (2010) A compact X-band linac for an X-ray FEL. In: Proceedings of LINAC2010, Tsukuba, Japan

    Google Scholar 

  24. Sun Y, Emma P, Raubenheimer T et al (2014) X-band rf driven free electron laser driver with optics linearization. Phys Rev ST Accel Beams 17:110703

    Google Scholar 

  25. Beijers J, Brandenburg S, Eikemaand K et al (2010) ZFEL: A compact, soft X-ray FEL in the Netherlands. In: Proceedings of FEL2010, Malmö, Sweden

    Google Scholar 

  26. Zeroth-order design report for the Next Linear Collider (1996) Technical report, NLC

    Google Scholar 

  27. Wuensch W (2016) High-gradient acceleration: CLIC and beyond. In: Proceedings of CLIC Workshop 2016, Geneva, Switzerland

    Google Scholar 

  28. Shi J (2016) Development of X-band high-gradient structures at Tsinghua University. In: Proceedings of CLIC Workshop 2016, Geneva, Switzerland

    Google Scholar 

  29. Qian H (2012) Research on the Emittance Issues of Photocathode RF Gun. Ph.D. thesis, Tsinghua University

    Google Scholar 

  30. Limborg C, Adolphsen C, McCormick D et al (2016) Performance of a first generation X-band photoelectron rf gun. Phys Rev Accel Beams 19:053401

    Google Scholar 

  31. Limborg C, Adolphsen C, Chu S et al (2011) An X-band gun test area at SLAC. In: Proceedings of PAC2011, New York, USA

    Google Scholar 

  32. Benedetti S, Grudiev A, Latina A (2017) High gradient linac for proton therapy. Phys Rev Accel Beams 20:040101

    Google Scholar 

  33. Amaldi U, Bonomi R, Braccini S et al (2010) Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs. Nucl Instrum Methods Phys Res, Sect A 620:563577

    Google Scholar 

  34. Higo T (2012) Recent high-gradient test result at KEK. In: Proceedings of Linear Collider Workshop 2012, Arlington, USA

    Google Scholar 

  35. Dolgashev V (2013) Recent high gradient tests at SLAC. In: Proceedings of HG2013, ICTP Trieste, Italy

    Google Scholar 

  36. Wang JW, Loew GA (1997) Field emission and rf breakdown in high-gradient room-temperature linac structures. Technical Report SLAC-PUB-7684, SLAC

    Google Scholar 

  37. Mesyats G, Trans IEEE (1983) Explosive processes on the cathode in a vacuum discharge. Electr Insul 18:218–225

    Google Scholar 

  38. Fursey G, Trans IEEE (1985) Field emission and vacuum breakdown. Electr Insul 20:659–670

    Google Scholar 

  39. Wuensch W (2002) High-gradient breakdown in normal-conducting rf cavities. In: Proceedings of EPAC2002, Paris, France

    Google Scholar 

  40. Dolgashev V, Tantawi S (2001) Simulations of currents in X-band accelerator structures using 2D and 3D particle-in-cell code. In: Proceedings of PAC2001, Chicago, USA

    Google Scholar 

  41. Adolphsen C, Baumgartner W, Jobe K et al (2001) Processing studies of X-band accelerator structures at the NLCTA. In: Proceedings of PAC2001, Chicago, USA

    Google Scholar 

  42. Munroe B, Zhang J, Xu H et al (2016) Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure. Phys Rev Accel Beams 19:031301

    Google Scholar 

  43. Degiovanni A, Wuensch W, Navarro J (2016) Comparison of the conditioning of high gradient accelerating structures. Phys Rev Accel Beams 19:032001

    Google Scholar 

  44. Dolgashev V, Raubenheimer T (2004) Simulation of rf breakdown effects on NLC beam. In: Proceedings of LINAC2004, Lübeck, Germany

    Google Scholar 

  45. Adolphsen C (2005) Advances in normal conducting accelerator technology from the X-band Linear Collider program. In: Proceedings of PAC2005, Knoxville, USA

    Google Scholar 

  46. Palaia A, Jacewicz M, Ruber R et al (2013) Effects of rf breakdown on the beam in the Compact Linear Collider prototype accelerator structure. Phys Rev ST Accel Beams 16:081004

    Google Scholar 

  47. Shi J (2012) Detuning of T18 after high power test. In: Proceedings of HG2012, Tsukuba, Japan

    Google Scholar 

  48. Grudiev A, Wuensch W (2008) Design of an X-band accelerating structure for the CLIC main linac. In: Proceedings of LINAC08, Victoria, Canada

    Google Scholar 

  49. Jones R, Adolphsen C, Wang J et al (2006) Wakefield damping in a pair of X-band accelerators for linear colliders. Phys Rev ST Accel Beams 9:102001

    Google Scholar 

  50. Marsh R, Shapiro M, Temkin R et al (2011) X-band photonic band-gap accelerator structure breakdown experiment. Phys Rev ST Accel Beams 14:021301

    Google Scholar 

  51. Forno M, Dolgashev V, Bowden G et al (2016) rf breakdown tests of mm-wave metallic accelerating structures. Phys Rev Accel Beams 19:011301

    Google Scholar 

  52. Forno M, Dolgashev V, Bowden G et al (2016) Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures. Phys Rev Accel Beams 19:051302

    Google Scholar 

  53. Kilpatrick W (1957) Criterion for vacuum sparking designed to include both rf and dc. Rev Sci Instrum 28:824–826

    Google Scholar 

  54. Braun H, Döbert S, Wilson I et al (2003) Frequency and temperature dependence of electrical breakdown at 21, 30, and 39 GHz. Phys Rev Lett 90:224801

    Google Scholar 

  55. Döbert S, Fandos R, Grudiev A, et al (2007) High power test of an X-band slotted-iris accelerator structure at NLCTA. In: Proceedings of PAC2007, Albuquerque, USA

    Google Scholar 

  56. Adolphsen C (2003) Normal-conducting rf structure test facilities and results. In: Proceedings of PAC2003, Portland, USA

    Google Scholar 

  57. Wang F (2008) Breakdown characteristics study on an 18 cell X-band structure. In: Proceedings of AAC2008, Santa Cruz, USA

    Google Scholar 

  58. Grudiev A, Calatroni S, Wuensch W (2009) New local field quantity describing the high gradient limit of accelerating structures. Phys Rev ST Accel Beams 12:102001

    Google Scholar 

  59. Timko H, Matyash K, Schneider R et al (2011) A one-dimensional particle-in-cell model of plasma build-up in vacuum arcs. Contrib Plasma Phys 51:1

    Google Scholar 

  60. Nordlund K, Djurabekova F (2012) Defect model for the dependence of breakdown rate on external electric fields. Phys Rev ST Accel Beams 15:071002

    Google Scholar 

  61. Dolgashev V, Tantawi S (2003) Effect of rf parameters on breakdown limits in high-vacuum X-band structures. Technical Report SLAC-PUB-10175, SLAC

    Google Scholar 

  62. Pritzkau D (2001) rf Pulsed Heating. Ph.D. thesis, SLAC

    Google Scholar 

  63. Wang F, Adolphsen C, Nantista C (2011) Performance limiting effects in X-band accelerators. Phys Rev ST Accel Beams 14:010401

    Google Scholar 

  64. Wuensch W (2007) Progress in understanding the high-gradient limitations of accelerating structures. In: Proceedings of APAC2007, Indore, India

    Google Scholar 

  65. Shao J, Chen H, Du Y et al (2014) Observation of temporal evolution following laser triggered rf breakdown in vacuum. Phys Rev ST Accel Beams 17:072002

    Google Scholar 

  66. Nantista C, Adolphsen C, Wang F (2010) A dual-moded cavity for rf breakdown studies. In: Proceedings of IPAC2010, Kyoto, Japan

    Google Scholar 

  67. Wang F, Adolphsen C, Nantista C (2011) Initial high power test results of an X-band dual-moded coaxial cavity. In: Proceedings of PAC2011, New York, USA

    Google Scholar 

  68. Kuzikov S, Kazakov S, Jiang Y et al (2010) Asymmetric bimodal accelerator cavity for raising rf breakdown thresholds. Phys Rev Lett 104:214801

    Google Scholar 

  69. Jiang Y, Kuzikov S, Kazakov S et al (2011) Multi-harmonic test setup for rf breakdown studies. Nucl Instrum Methods Phys Res Sect A 657:71–77

    Google Scholar 

  70. Degiovanni A, Doebert S, Farabolini W et al (2014) Diagnostics and analysis techniques for high power X-band accelerating structures. In: Proceedings of LINAC2014, Geneva, Switzerland

    Google Scholar 

  71. Wuensch W, Degiovanni A, Calatroni S et al (2017) Statistics of vacuum breakdown in the high-gradient and low-rate regime. Phys Rev Accel Beams 20:011007

    Google Scholar 

  72. Wang F, Adolphsen C (2009) Localization of rf breakdowns in a standing wave cavity. Phys Rev ST Accel Beams 12:042001

    Google Scholar 

  73. Klavins J, Dementjevs S, Locans U et al (2013) Breakdown localization studies on the SWISSFEL C-band test structures. In: Proceedings of IPAC2013, Shanghai, China

    Google Scholar 

  74. Degiovanni A, Farabolini W, Rajamäki R et al (2016) Breakdown localization in rf structures. In: Proceedings of CLIC Workshop 2016, Geneva, Switzerland

    Google Scholar 

  75. Abe T, Kageyama T, Sakai H et al (2016) Breakdown study based on direct in situ observation of inner surfaces of an rf accelerating cavity during a high-gradient test. Phys Rev Accel Beams 19:102001

    Google Scholar 

  76. Fontenla A (2015) Post-Mortem analysis: SEM imaging review. In: Proceedings of MeVArc2015, Lapland, Finland

    Google Scholar 

  77. Wu X, Shi J, Chen H et al (2017) High-gradient breakdown studies of an X-band Compact Linear Collider prototype structure. Phys Rev Accel Beams 20:052001

    Google Scholar 

  78. Teo K, Minoux E, Hudanski L et al (2005) Carbon nanotubes as cold cathodes. Nature 437:968

    Google Scholar 

  79. Ganter R, Bakker R, Gough C et al (2006) Nanosecond field emitted and photo-field emitted current pulses from ZrC tips. Nucl Instrum Methods Phys Res Sect A 565:423–429

    Google Scholar 

  80. Leemann S (2007) Characterization of electron bunches from field emitter array cathodes for use in next-generation X-ray free electron lasers. Ph.D. thesis, Suisse:EPFL

    Google Scholar 

  81. Li X, Li M, Dan L et al (2013) Cold cathode rf guns based study on field emission. Phys Rev ST Accel Beams 16:123401

    Google Scholar 

  82. Baryshev S, Antipov S, Shao J et al (2014) Planar ultrananocrystalline diamond field emitter in accelerator radio frequency electron injector: Performance metrics. Appl Phys Lett 15:203505

    Google Scholar 

  83. Fowler R, Nordheim L (1928) Electron emission in intense electric fields. Proc Roy Soc London A 119:173–181

    Google Scholar 

  84. Gadzuk J, Plummer E (1973) Eielci Emission Energy Distribution (FEED). Rev Mod Phys 45:3

    Google Scholar 

  85. Fursey G (2007) Field emission in vacuum microelectronics. In: Brodie I, Schwoebel P (eds) Microdevices. Springer Science and Business Media, Berlin

    Google Scholar 

  86. Forbes R, Deane J (2007) Reformulation of the standard theory of Fowler-Nordheim tunnelling and cold field electron emission. Proc Roy Soc London A 463:2907–2927

    Google Scholar 

  87. Chen H, Du Y, Gai W et al (2012) Surface-emission studies in a high-field rf gun based on measurements of field emission and Schottky-enabled photoemission. Phys Rev Lett 109:204802

    Google Scholar 

  88. Zadin V, Pohjonen A, Aabloo A et al (2014) Electrostatic-elastoplastic simulations of copper surface under high electric fields. Phys Rev ST Accel Beams 17:103501

    Google Scholar 

  89. Norem J, Wu V, Moretti A et al (2003) Dark current, breakdown, and magnetic field effects in a multicell, 805 MHz cavity. Phys Rev ST Accel Beams 6:072001

    Google Scholar 

  90. Insepov Z, Norem J (2013) Can surface cracks and unipolar arcs explain breakdown and gradient limits? J Vac Sci Technol A 31:011302

    Google Scholar 

  91. Wang F (2015) The macroscopic field emission. In: Proceedings of HG2015, Beijing, China

    Google Scholar 

  92. Jensen K, Lau Y, Feldman D et al (2008) Electron emission contributions to dark current and its relation to microscopic field enhancement and heating in accelerator structures. Phys Rev ST Accel Beams 11:081001

    Google Scholar 

  93. Marinov T, Hariharan S (2009) Modeling of field emission from nanowires. J Appl Phys 105:064308

    Google Scholar 

  94. Kyritsakis A, Kokkorakis G, Xanthakis J et al (2010) Self focusing of field emitted electrons at an ellipsoidal tip. Appl Phys Lett 97:023104

    Google Scholar 

  95. Filip M, Filip L (2011) Electronic and field emission properties of two-dimensional nanotori. J Vac Sci Technol B 29:02B105

    Google Scholar 

  96. Patterson A, Akinwande A (2015) Elementary framework for cold field emission from quantum-confined, non-planar emitters. J Appl Phys 117:174311

    Google Scholar 

  97. Noer R, Niedermann P, Sankarraman N et al (1986) Electron field emission from intentionally introduced particles on extended niobium surfaces. J Appl Phys 59:3851–3860

    Google Scholar 

  98. Lysenkov D, Müller G (2005) Field emission measurement techniques for the optimisation of carbon nanotube cathodes. Int J Nanotechnol 2:3

    Google Scholar 

  99. Pandey A, Müller G, Reschke D et al (2009) Field emission from crystalline niobium. Phys Rev ST Accel Beams 12:023501

    Google Scholar 

  100. Han J, Bähr J, Grabosch H et al (2005) Dark current and multipacting in the photocathode rf guns at PITZ. In: Proceedings of PAC2005, Knoxville, USA

    Google Scholar 

  101. Dowell D, Jongewaard E, Limborg C, et al (2007) Measurement and analysis of field emission electrons in the LCLS gun. In: Proceedings of PAC2007, Albuquerque, USA

    Google Scholar 

  102. Xiang R, Arnold A, Kamps T et al (2014) Experimental studies of dark current in a superconducting rf photoinjector. Phys Rev ST Accel Beams 17:043401

    Google Scholar 

  103. Wang D, Gai W, Tang C et al (2016) Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient. Phys Rev Lett 116:054801

    Google Scholar 

  104. Wang P, Zha H, Syratchev I et al (2017) rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider. Phys Rev Accel Beams 20:112001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahang Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shao, J. (2018). Introduction. In: Investigations on rf breakdown phenomenon in high gradient accelerating structures. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-7926-9_1

Download citation

Publish with us

Policies and ethics