Skip to main content

A Microcosm Study on the Impact of Acidification on Feeding, Survival, Nauplii Production Rate, Post-embryonic Development and Nutritional Composition of Marine Copepod

  • Chapter
  • First Online:
Basic and Applied Zooplankton Biology

Abstract

Ocean acidification is the ongoing decrease in the pH of the oceans, caused by their uptake of anthropogenic carbon dioxide from the atmosphere. Increased carbon dioxide (CO2) from the burning of fossil fuels and other human activities continues to affect our atmosphere, resulting in global warming and climate change. Less well known is that this carbon dioxide is altering the chemistry of the surface oceans and causing them to become more acidic. From scientists and marine resource managers to policy- and decision-makers, there is a growing concern that the process called ocean acidification could have significant consequences on marine organisms which may alter species composition, disrupt marine food webs and ecosystems and potentially damage fishing, tourism and other human activities connected to the seas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajiboye, O.O., A.F. Yakubu, T.E. Adams, E.D. Olaji, and N.A. Nwogu. 2011. A review of the use of copepods in marine fish larviculture. Reviews in Fish Biology and Fisheries 21 (2): 225–246.

    Article  Google Scholar 

  • Almén, A.K., A. Vehmaa, A. Brutemark, L. Bach, S. Lischka, S. Furuhagen, A. Paul, J.R. Bermúdez, U. Riebesell, J. Engström-Öst, and A. Stuhr. 2016. Negligible effects of ocean acidification on Eurytemora affinis (Copepoda) offspring production. Biogeosciences 13: 1037–1048.

    Article  CAS  Google Scholar 

  • AOAC. 1995. Official Methods of Analysis, 16th ed., 62pp. Washington, DC: Association of Official Analytical Chemists.

    Google Scholar 

  • Barroso, M.V., B.B. Boos, R. Antoniassi, and L.F.L. Fernandes. 2015. Use of the copepod Oithona hebes as a bioencapsulator of essential fatty acids. Brazilian Journal of Oceanography 63 (3): 331–336.

    Article  Google Scholar 

  • Bermúdez, J.R., M. Winder, A. Stuhr, A.K. Almén, J. Engström-Öst, and U. Riebesell. 2016. Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea. Biogeosciences Discussions 10: 5194.

    Google Scholar 

  • Bligh, E.G., and W.J. Dyer. 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.

    Article  CAS  Google Scholar 

  • Bundy, J.G., M.P. Davey, and M.R. Viant. 2009. Environmental metabolomics: A critical review and future perspectives. Metabolomics 5: 3–21.

    Article  CAS  Google Scholar 

  • Burnell, O., B. Russell, A. Irving, and S. Connell. 2013. Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Marine Ecology Progress Series 485: 37–46.

    Article  CAS  Google Scholar 

  • Buttino, I. 1994. The effect of low concentrations of phenol and ammonia on egg production rates, fecal pellet production and egg viability of the calanoid copepod Acartia clausi. Marine Biology 119 (4): 629–634.

    Article  CAS  Google Scholar 

  • Byrne, M. 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology Annual Review 49: 1–42.

    Google Scholar 

  • Byrne, M., M. Ho, P. Selvakumaraswamy, H.D. Nguyen, S.A. Dworjanyn, and A.R. Davis. 2009. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of the Royal Society of Victoria 276: 1883–1888.

    Article  Google Scholar 

  • Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365–365.

    Article  CAS  Google Scholar 

  • Caldeira, K., and M. Wickett. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research: Oceans 110: 1–12.

    Article  CAS  Google Scholar 

  • Camus, T., and C. Zeng. 2012. Reproductive performance, survival and development of nauplii and copepodites, sex ratio and adult life expectancy of the harpacticoid copepod, Euterpina acutifrons fed different microalgal diets. Aquaculture Research 43: 1159–1169.

    Article  CAS  Google Scholar 

  • Carman, K.R., D. Thistle, F.W. Fleeger, and J.P. Barry. 2004. The influence of introduced CO2 on deep sea metazoan meiofauna. Journal of Oceanography 60: 762–772.

    Article  Google Scholar 

  • Comeau, S., R. Jeffree, J.L. Teyssié, and J.P. Gattuso. 2010. Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS One 5 (6): e11362.

    Article  CAS  Google Scholar 

  • Comeau, S., R. Carpenter, C. Lantz, and P. Edmunds. 2015. Ocean acidification accelerates dissolution of experimental coral reef communities. Biogeosciences 12: 365–372.

    Article  CAS  Google Scholar 

  • Conceiçao, L.E.C., M. Yufera, P. Makridis, S. Morais, and M. Dinis. 2010. Live feeds for early stages of fish rearing. Aquaculture Research 41: 613–640.

    Article  Google Scholar 

  • Conover, R.J., and E.D.S. Corner. 1968. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. Journal of the Marine Biological Association of the United Kingdom 48: 49–75.

    Article  Google Scholar 

  • Copeman, L.A., C.C. Parrish, J.A. Brown, and M. Harel. 2002. Effects of docosahexaenoic, eicosapentaenoic and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): A live food enrichment experiment. Aquaculture 210 (1–4): 285–304.

    Article  CAS  Google Scholar 

  • Coull, B.C., and G.T. Chandler. 1992. Pollution and meiofauna: Field, laboratory and mesocosm studies. Oceanography and Marine Biology – An Annual Review 30: 191–271.

    Google Scholar 

  • Cripps, G., P. Lindeque, and K. Flynn. 2014. Have we been underestimating the effects of ocean acidification in zooplankton? Global Change Biology 20: 3377–3385.

    Article  Google Scholar 

  • Cutts, C.J. 2003. Culture of harpacticoid copepods: Potential as live food for rearing marine fish. Advances in Marine Biology 44: 295–316.

    Article  Google Scholar 

  • Davis, C.C. 1955. The Marine and Freshwater Plankton, 562. East Lansing: Michigan State University Press.

    Google Scholar 

  • Drillet, G., M.H. Iversen, T.F. Sørensen, H. Ramløv, T. Lund, and B.W. Hansen. 2006. Effect of cold storage upon eggs of a calanoid copepod Acartia tonsa Dana and their offspring. Aquaculture 254: 714–729.

    Article  Google Scholar 

  • Drillet, G., S. Frouël, M.H. Sichlau, P.M. Jepsen, J.K. Højgaard, A.K. Joarder, and B.W. Hansen. 2011. Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture 315 (3–4): 155–166.

    Article  Google Scholar 

  • Dubois, M., K.A. Gills, J.K. Hamilton, P.A. Rober, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350.

    Article  CAS  Google Scholar 

  • Dupont, S., and H.O. Portner. 2013. A snapshot of ocean acidification research. Marine Biology 160: 1765–1771.

    Article  CAS  Google Scholar 

  • Dupont, S., and M.C. Thorndyke. 2008. Ocean acidification and its impact on the early life-history stages of marine animals. In Impacts of Acidification on Biological, Chemical and Physical Systems in the Mediterranean and Black Seas, CIESM Monographs, Monaco, ed F. Briand, 89–97.

    Google Scholar 

  • Dupont, S., O. Ortega-Martinez, and M. Thorndyke. 2010. Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19: 449–462.

    Article  CAS  Google Scholar 

  • Evjemo, J.O., K.I. Reitan, and Y. Olsen. 2003. Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture 227: 191–210.

    Article  Google Scholar 

  • Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65: 414–432.

    Article  CAS  Google Scholar 

  • FAO. 2012. The state of world fisheries and aquaculture. Rome: FAO. 209pp.

    Google Scholar 

  • Fitzer, S.C., G.S. Caldwell, A.J. Close, A.S. Clare, R.C. Upstill-Goddard, and M.G. Bentley. 2012. Ocean acidification induces multigenerational decline in copepod naupliar production with possible conflict for reproductive resource allocation. Journal of Experimental Marine Biology and Ecology 418–419: 30–36.

    Article  Google Scholar 

  • Folch, J.M., M. Lees, and G.H. Sloane-Stanley. 1956. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 226: 497–509.

    Google Scholar 

  • Gao, K., and Y. Zheng. 2010. Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of coralline alga Corallina sessilis (Rhodophyta). Global Change Biology 16: 2388–2398.

    Article  Google Scholar 

  • Gao, K., Y. Aruga, K. Asada, T. Ishihara, T. Akano, and M. Kiyohara. 1993. Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Marine Biology 117: 129–132.

    Article  CAS  Google Scholar 

  • Gattuso, J.P., and H. Lavigne. 2009. Technical note: Approaches and software tools to investigate the impact of ocean acidification. Biogeosciences 6: 2121–2133.

    Article  CAS  Google Scholar 

  • Gray, J.S. 1985. Nitrogenous excretion by meiofauna from coral reef sediments. Marine Biology 89: 31–35.

    Article  CAS  Google Scholar 

  • Hanssen, A.E. 2014. Interaction effects of ocean acidification and warming on the fecundity of the marine copepod Calanus finmarchicus. Marine Coastal Development. Norwegian University of Science and Technology, Department of Biology, 63 pp.

    Google Scholar 

  • Hendriks, I.E., C.M. Duarte, and M.A. Alvarez. 2010. Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. Estuarine, Coastal and Shelf Science 86: 157–164.

    Article  CAS  Google Scholar 

  • Hicks, G.R.F., and B.C. Coull. 1983. The ecology of marine meiobenthic harpacticoid copepods. Oceanography and Marine Biology – Annual Review 21: 67–175.

    Google Scholar 

  • Hofmann, G.E., and A.E. Todgham. 2010. Living in the now: Physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology 72: 127–145.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change. 2007. Synthesis Report: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 104, ed. R.K. Pachauri and A. Reisinger. Geneva: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • IPCC. 2013. Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, 3–29. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Jepsen, P.M. et al. 2015. Inorganic nitrogen addition in a semi-intensive turbot larval aquaculture system: Effects on phytoplankton and zooplankton composition. Aquaculture Research. https://doi.rog/10.1111/are.12842.

  • Jónasdóttir, S., A.W. Visser, and C. Jespersen. 2009. Assessing the role of food quality in the production and hatching of Temora longicornis eggs. Marine Ecology Progress Series 382: 139–150.

    Article  Google Scholar 

  • Kaniewska, P., P.R. Campbell, D.I. Kline, M. Rodriguez Lanetty, D.J. Miller, S. Dove, and O. Hoegh-Guldberg. 2012. Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS ONE 7: e34659.

    Article  CAS  Google Scholar 

  • Kelly, M.W., E. Sanford, and R.K. Grosberg. 2012. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proceedings of the Royal Society of London B 279: 349–356.

    Article  Google Scholar 

  • Kletou, D., and J.M. Hall-Spencer. 2012. Threats to ultraoligotrophic marine ecosystems, marine ecosystems. In Marine Ecosystems, ed. A. Cruzado, 34 pp. Rijeka: InTech.

    Google Scholar 

  • Kroeker, K.J., F. Micheli, and M.C. Gambi. 2013. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nature Climate Change 3: 156–159.

    Article  CAS  Google Scholar 

  • Kurihara, H., and A. Ishimatsu. 2008. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Marine Pollution Bulletin 56: 1086–1090.

    Article  CAS  Google Scholar 

  • Kurihara, H., S. Shimode, and Y. Shirayama. 2004a. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Marine Pollution Bulletin 49: 721–727.

    Article  CAS  Google Scholar 

  • Kurihara, H., S. Shimode, and Y. Shirayama. 2004b. Sub-lethal effects of elevated concentration of CO on planktonic copepods and seaurchins. Journal of Oceanography 60: 743–750.

    Article  CAS  Google Scholar 

  • Lahnsteiner, F., M. Kletzl, and T. Weismann. 2009. The risk of parasite transfer to juvenile fishes by live copepod food with the example Triaenophorus crassus and Triaenophorus nodulosus. Aquaculture 295: 120–125.

    Article  Google Scholar 

  • Lavigne, H., and J.P. Gattuso. 2011. Seacarb: seawater carbonate chemistry with R.R package version 2.4.3.

    Google Scholar 

  • Leu, E., M. Daase, K.G. Schulz, A. Stuhr, and U. Riebesell. 2013. Effect of ocean acidification on the fatty acid composition of a natural plankton community. Biogeosciences 10: 1143–1153.

    Article  CAS  Google Scholar 

  • Li, W., and K. Gao. 2012. A marine secondary producer respires and feeds more in a high CO2 ocean. Marine Pollution Bulletin 64: 699–703.

    Article  CAS  Google Scholar 

  • Lima, L.C.M., D.M.A.F. Navarro, and L.E. Souzasantos. 2013. Effect of diet on the fatty acid composition of the copepod Tisbe biminiensis. Journal of Crustacean Biology 33 (3): 372–381.

    Article  Google Scholar 

  • Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265.

    CAS  Google Scholar 

  • Mauchline, J. 1998. The biology of calanoid copepods. Advances in Marine Biology 33 (i-x, 1-7): 10. ill. (Academic Press, London). ISBN 0-12-105545-0(paperback) or ISBN 0-12-026133-2 (hardback).

    Google Scholar 

  • Mayor, D.J., C. Matthews, K. Cook, A.F. Zuur, and S. Hays. 2007. CO2 induced acidification affects hatching success in Calanus finmarchicus. Marine Ecology Progress Series 350: 91–97.

    Article  Google Scholar 

  • Mayor, D.J., U. Sommer, K.B. Cook, and M.R. Viant. 2015. The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Scientific Reports 5: 13690.

    Article  Google Scholar 

  • McLachlan, A., and A.C. Brown. 2006. The Ecology of Sandy Shores. 2nd ed, 392. Amsterdam: Elsevier Science.

    Google Scholar 

  • Meeren, T., R.E. Olsen, K. Hamre, and H.J. Fyhn. 2008. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274: 375–397.

    Article  CAS  Google Scholar 

  • Moriarty, D.J.W., P.C. Pollard, D.M. Alongi, C.R. Wilkinson, and J.S. Gray. 1985. Bacterial productivity and trophic relationships with consumers on coral reefs (Mecor 1). Proceedings of the 5th International Coral Reef Symposium 3: 457–462.

    Google Scholar 

  • Nageswara Rao, I., and G. Krupanidhi. 2001. Biochemical composition of zooplankton from the Andaman Sea. Journal of Marine Biological Association of India 43: 49–56.

    Google Scholar 

  • Nanton, D.A., and J.D. Castell. 1998. The effects of dietary fatty acids on the fatty acid composition of harpacticoid copepods, Tisbe sp., for use as a live food for marine fish larvae. Aquaculture 163: 251–261.

    Article  CAS  Google Scholar 

  • Parrish, C.C., V.M. French, and M.J. Whiticar. 2012. Lipid class and fatty acid composition of copepods (Calanus finmarchicus, C. glacialis, Pseudocalanus sp., Tisbe furcata and Nitokra lacustris) fed various combination of autotrophic and heterotrophic protists. Journal of Plankton Research 34 (5): 356–375.

    Article  CAS  Google Scholar 

  • Pedersen, S.A., B.H. Hansen, D. Altin, and A.J. Olsen. 2013. Medium-term exposure of the North Atlantic copepod Calanus finmarchicus (Gunnerus, 1770) to CO2 -acidified seawater: Effects on survival and development. Biogeosciences 10: 7481–7491.

    Article  Google Scholar 

  • Pedersen, S.A., V.T. Vage, A.J. Olsen, K.M. Hammer, and D. Altin. 2014. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus gunnerus (Copepoda: Calanoidae). Journal of Toxicology and Environmental Health 77: 535–549.

    Article  CAS  Google Scholar 

  • Perumal, P., P. Santhanam, and M. Rajkumar. 2008. Population density of two copepods in relation to hydrographic parameters in Parangipettai coastal waters, Southeast coast of India. Journal of Marine Biological Association of India 50: 1–5.

    Google Scholar 

  • Peterson, C.H., M.C. Kennicutt, R.H. Green, P. Montagna, D.E. Harper, E.N. Powell, and P.F. Roscigno. 1996. Ecological consequences of environmental perturbations associated with offshore hydrocarbon production: A perspective on long-term exposures in the Gulf of Mexico. Canadian Journal of Fisheries and Aquatic Sciences 53 (11): 2637–2654.

    Article  CAS  Google Scholar 

  • Pörtner, H.O., S. Dupont, F. Melzner, D. Storch, and M. Thorndyke. 2010. Studies of metabolic rate and other characters across life stages. In Guide to Best Practices Ocean Acidification and Data Reporting, ed. U. Riebesell, V.J. Fabry, L. Hansson, and J.-P. Gattuso, 137–165. Luxembourg: Publications Office of the European Union.

    Google Scholar 

  • Rajendran, M. 1973. A guide to the study of freshwater calanoids. Journal of Madurai Kamaraj University 1 (Suppl 1): 1–86.

    Google Scholar 

  • Rajkumar, M., K.P. Kumaraguru Vasagam, and P. Perumal. 2008. Biochemical composition of wild copepods, Acartia erythraea Giesbrecht and Oithona brevicornis Giesbrecht, from Coleroon coastal waters, Southeast coast of India. In Advances in Aquatic Ecology, ed. V.B. Sakhare, vol. 2, 1–20. New Delhi: Daya Publishing House.

    Google Scholar 

  • Reymond, C.E., A. Lloyd, D.I. Kline, S.G. Dove, and J.M. Pandolfi. 2013. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Global Change Biology 19: 291–302.

    Article  Google Scholar 

  • Richardson, A.J. 2008. In hot water: Zooplankton and climate change. ICES Journal of Marine Science 65: 279–295.

    Article  Google Scholar 

  • Ries, J.B., A.L. Cohen, and D.C. McCorkle. 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37: 1131–1134.

    Article  CAS  Google Scholar 

  • Robin, R.S., K. Vishnu Vardhan, Pradipta R. Muduli, M. Srinivasan, and T. Balasubramanian. 2012. Preponderance of enteric pathogens along the coastal waters of Southern Kerala, Southwest coast of India. Marine Science 2 (1): 6–11.

    Article  Google Scholar 

  • Rossoll, D., R. Bermúdez, H. Hauss, K.G. Schultz, U. Riebesell, U. Sommer, and M. Winder. 2012. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS One 7: e34737.

    Article  CAS  Google Scholar 

  • Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T. Peng, A. Kozyr, T. Ono, and A.F. Rios. 2004. The ocean sink for anthropogenic CO2. Science 305: 367–371.

    Article  CAS  Google Scholar 

  • Santhanam, P., and P. Perumal. 2012. Feeding, survival, egg production and hatching rate of the marine copepod Oithona rigida Giesbrecht (Copepoda: Cyclopoida) under experimental conditions. Journal of Marine Biological Association of India 54 (1): 38–44.

    Google Scholar 

  • Santhanam, P., and P. Perumal. 2013. Developmental biology of brackishwater copepod Oithona rigida Giesbrecht: A laboratory investigation. Indian Journal of Geo-Marine Sciences 42 (2): 236–243.

    Google Scholar 

  • Santhanam, P., S. Ananth, R. Nandakumar, T. Jayalakshmi, M. Kaviyarasan, and P. Perumal. 2015. Intensive indoor and outdoor pilot-scale culture of marine copepods. In Advances in Marine and Brackishwater Aquaculture, 33–42. New Delhi: Springer.

    Google Scholar 

  • Sato, N., M. Tsuzuki, and A. Kawaguchi. 2003. Glycerolipid synthesis in Chlorella kessleri 11 h II. Effect of the CO2 concentration during growth. Biochimica et Biophysica Acta 1633: 35–42.

    Article  CAS  Google Scholar 

  • Schulz, K.G., J. Barcelose Ramos, R.E. Zeebe, and U. Riebesell. 2009. CO2 perturbation experiments: Similarities and differences between dissolved inorganic carbon and total alkalinity manipulations. Biogeosciences 6: 2145–2153.

    Article  CAS  Google Scholar 

  • Shiryama, Y., and H. Thorton. 2005. Effect of increased atmospheric CO2 on shallow water marine benthos. Journal of Geophysical Research 110: C09S08.

    Google Scholar 

  • Støttrup, J.G. 2003. Production and nutritional value of copepods. In Live Feeds in Marine Aquaculture, ed. J.G. Støttrup and L.A. McEvoy. Oxford: Blackwell. 318pp.

    Chapter  Google Scholar 

  • Støttrup, J.G., and N.H. Norsker. 1997. Production and use of copepods in marine fish larviculture. Aquaculture 155: 231–247.

    Article  Google Scholar 

  • Strickland, J.D.H., and T.R. Parsons. 1972. A Practical Handbook of Seawater Analysis, Second edition, bulletin, 167pp. Ottawa: Fisheries Research Board of Canada.

    Google Scholar 

  • Sun, B., and J.W. Fleeger. 1995. Sustained mass culture of Amphiascoides atopus, a marine harpacticoid copepod in a recirculating system. Aquaculture 136: 313–321.

    Article  Google Scholar 

  • Talmage, S.C., and C.J. Gobler. 2012. Effects of CO2 and the harmful alga Aureococcus anophagefferens on growth and survival of oyster and scallop larvae. Marine Ecology Progress Series 464: 121–147.

    Article  CAS  Google Scholar 

  • Thistle, D., K.R. Carman, L. Sedlacek, P.G. Brewer, J.W. Fleeger, and J.P. Barry. 2005. Deep-ocean experimental tests of the sensitivity of sediment-dwelling animals to imposed CO2 gradients. Marine Ecology Progress Series 289: 1–4.

    Article  Google Scholar 

  • Thomsen, J., and F. Melzner. 2010. Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Marine Biology 157: 2667–2676.

    Article  Google Scholar 

  • Thor, P., and S. Dupont. 2015. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Global Change Biology 21: 2261–2271.

    Article  Google Scholar 

  • Thor, P., and E.O. Oliva. 2015. Ocean acidification elicits different energetic responses in an Arctic and a boreal population of the copepod Pseudocalanus acuspes. Marine Biology 162: 799–807.

    Article  CAS  Google Scholar 

  • Tocher, J.A., J.R. Dick, J.E. Bron, A.P. Shinn, and D.R. Tocher. 2010. Lipid and fatty acid composition of parasitic caligid copepods belonging to the genus Lepeophtheirus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 156 (2): 107–114.

    Article  CAS  Google Scholar 

  • Tomanek, L., M.J. Zuzow, A.V. Ivanina, E. Beniash, and I.M. Sokolova. 2011. Proteomic response to elevated pCO2 level in eastern oysters, Crassostrea virginica: Evidence for oxidative stress. The Journal of Experimental Biology 214: 1836–1844.

    Article  CAS  Google Scholar 

  • Torstensson, A., M. Hedblom, J. Andersson, M.X. Andersson, and A. Wulff. 2013. Synergism between elevated pCO2 and temperature on the Antarctic Sea ice diatom Nitzschia lecointei. Biogeosciences 10 (10): 6391–6401.

    Article  CAS  Google Scholar 

  • Tunnicliffe, V., K.T.A. Davies, D.A. Butterfield, R.W. Embley, J.M. Rose, and W.W. Chadwick. 2009. Survival of mussels in extremely acidic waters on a submarine volcano. Nature Geoscience 2: 344–348.

    Article  CAS  Google Scholar 

  • Vehmaa, A., A. Brutemark, and J. Engström-Öst. 2012. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes. PLoS ONE 7: e48538.

    Article  CAS  Google Scholar 

  • Vehmaa, A., H. Hogfors, E. Gorokhova, A. Brutemark, T. Holmborn, and J. Engstrom-Ost. 2013. Projected marine climate change: Effects on copepod oxidative status and reproduction. Ecology and Evolution 3 (13): 4548–4557.

    Article  Google Scholar 

  • Vizcaíno-Ochoa, V., J.P. Lazo, B. Barón-Sevilla, and M.A. Drawbridge. 2010. The effect of dietary docosahexaenoic acid (DHA) on growth, survival and pigmentation of California halibut Paralichthys californicus larvae (Ayres, 1810). Aquaculture 302 (3–4): 228–234.

    Article  CAS  Google Scholar 

  • Watanabe, Y., A. Yamaguchi, H. Ishida, T. Harimoto, S. Suzuki, Y. Sekido, T. Ikeda, and Y. Shirayama. 2006. Lethality of increasing CO2 levels on deep-sea copepods in the western North Pacific. Journal of Oceanography 62: 185–196.

    Article  Google Scholar 

  • Wetzel, M.A., J.W. Fleeger, and S.P. Powers. 2001. Effects of hypoxia and anoxia on meiofauna: A review with new data from the Gulf of Mexico, Coastal and Estuarine Studies. In Coastal Hypoxia: Consequences for Living Resources and Ecosystems, ed. R.E. Turner and N.N. Rabalais. Washington, DC: AGU. 165pp.

    Google Scholar 

  • Whiteley, N.M. 2011. Physiological and ecological responses of crustaceans to ocean acidification. Marine Ecology Progress Series 430: 257–271.

    Article  CAS  Google Scholar 

  • Zaleha, K., and I. Bursa. 2012. Culture of harpacticoid copepods: understanding the reproduction and effect of environmental factors. Aquaculture, Dr. Zainal Muchlisin (Ed.), ISBN: 978-953-307-974-5, InTech. Available from: http://www.intechopen.com/books/Aquacult/copepods-in-Aquacult.

  • Zaleha, K., and I.J. Farahiyah. 2010. Culture and growth of a marine harpacticoid, Pararobertsonia sp. in different salinity and temperature. Sains Malaysiana 39 (1): 135–140.

    Google Scholar 

  • Zaleha, K., A. John, H. Asgnari, A. Laama, and M.A.M. Fuad. 2014. Fatty acid profiling of benthic harpacticoid (Pararobertsonia sp.) exposed to environmental stresses. Malaysian Applied Biology Journal 43 (1): 31–39.

    Google Scholar 

  • Zervoudaki, S., E. Krasakoopoulou, M. Moutsopoulos, S. Protopapa, S. Marro, and F. Gazeau. 2016. Copepod response to ocean acidification in a low nutrient-low chlorophyll environment in the NW Mediterranean Sea. Estuarine, Coastal and Shelf Science 186: 152–162. https://doi.org/10.1016/j.ecss.2016.06.030.

    Article  CAS  Google Scholar 

  • Zhang, D., S. Li, G. Wang, and D. Guo. 2011. Impacts of CO2-driven seawater acidification on survival, egg production rate and hatching success of four marine copepods. Acta Oceanologica Sinica 30: 86–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors thank the Head of the Department of Marine Science and authorities of Bharathidasan University for the facilities provided. Authors also thank the DBT, Govt. of India, for providing financial assistance to establish the copepod culture facility through the extramural project (BT/PR 5856/AAQ/3/598/2012). The first author (TJ) thank the Bharathidasan University, for University Research Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayalakshmi, T., Santhanam, P. (2019). A Microcosm Study on the Impact of Acidification on Feeding, Survival, Nauplii Production Rate, Post-embryonic Development and Nutritional Composition of Marine Copepod. In: Santhanam, P., Begum, A., Pachiappan, P. (eds) Basic and Applied Zooplankton Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7953-5_18

Download citation

Publish with us

Policies and ethics