Skip to main content

Trichocyte Keratin-Associated Proteins (KAPs)

  • Chapter
  • First Online:
The Hair Fibre: Proteins, Structure and Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1054))

Abstract

The trichocyte (hard α-) keratins are epidermal appendages (hair, wool, hoof, horn, claw, baleen and quill) with a classic filament-matrix composite structure. In human hair, for example, keratin intermediate filaments (IF) of diameter 7.5 nm are embedded in a matrix formed from at least 89 different types of keratin-associated proteins (KAPs). The latter fall into three families, generally defined in terms of their cysteine residue or glycine plus tyrosine residue content. The KAPs, which infiltrate the space between the IF, are recognized as having especially important roles in the organisation of the IF into macrofibrils, in determining some of the most important physical attributes of the fully-keratinised hair fibre, including its hardness, toughness and pliability, and in linking IF to one another, either directly or indirectly, with a resultant increase in durability and resistance to degradation by microorganisms. Sequence data for many KAPs are now available, and repeating motifs of varying extent have been observed in a number of them. Little, however, is known about their three-dimensional structures, though modelling has indicated that some local structural regularity is likely to exist. Current data suggest that the KAPs in vivo may adopt a variety of energetically-similar conformations stabilized predominantly by intramolecular disulfide bonds. The role of KAPs in hair diseases relates more to modulation in gene expression than to point mutations, in contrast to that observed for the IF proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IF:

intermediate filaments

KAP:

keratin-associated protein

HGT:

high-glycine-tyrosine protein

HS:

high-sulfur protein

UHS:

ultra-high sulfur protein

References

  1. Gillespie, J. M. (1990). The proteins of hair and other hard α-keratins. In R. D. Goldman & P. M. Steinert (Eds.), Cellular and molecular biology of intermediate filaments (pp. 95–128). New York: Plenum Press.

    Chapter  Google Scholar 

  2. Powell, B. C., & Rogers, G. E. (1990). Hard keratin IF and associated proteins. In R. D. Goldman & P. M. Steinert (Eds.), Cellular and molecular biology of intermediate filaments (pp. 267–300). New York: Plenum Press.

    Chapter  Google Scholar 

  3. Fraser, R. D. B., MacRae, T. P., & Rogers, G. E. (1972). Keratins: Their composition, structure and biosynthesis. In The Bannerstone division of American lectures in living chemistry (p. 320). Springfield: Charles C Thomas Publisher, Ltd.

    Google Scholar 

  4. Orwin, D. F. G. (1979). Cytological studies on keratin fibers. In D. A. D. Parry & L. K. Creamer (Eds.), Fibrous proteins: Scientific, industrial and medical aspects (pp. 271–297).

    Google Scholar 

  5. Orwin, D. F. G. (1979). The cytology and cytochemistry of the wool follicle. International Review of Cytology, 60, 331–374.

    Article  PubMed  CAS  Google Scholar 

  6. Rogers, M. A., et al. (2006). Human hair keratin-associated proteins (KAPs). International Review of Cytology, 251, 209–263.

    Article  CAS  PubMed  Google Scholar 

  7. Wu, D.-D., Irwin, D. M., & Zhang, Y.-P. (2008). Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evolutionary Biology, 25(8), 241–255.

    Article  CAS  Google Scholar 

  8. Mercer, E. H. (1961). Keratin and keratinization. (1st ed., International series of monographs on pure and applied biology, Vol. 12, p. 316). Oxford: Pergamon Press.

    Google Scholar 

  9. McLaughlin, P. J., & Dayhoff, M. O. (1970). Eukaryotes versus prokaryotes: An estimate of evolutionary distance. Science, 168, 1469–1471.

    Article  CAS  PubMed  Google Scholar 

  10. Gong, H., et al. (2012). An updated nomenclature for keratin-associated proteins (KAPs). International Journal of Biological Sciences, 8(2), 258–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parry, D. A. D., et al. (2006). Human hair keratin-associated proteins: Sequence regularities and structural implications. Journal of Structural Biology, 155(2), 361–369.

    Article  CAS  PubMed  Google Scholar 

  12. Matsunaga, R., et al. (2013). Bidirectional binding property of high glycine-tyrosine keratin-associated protein contributes to the mechanical strength and shape of hair. Journal of Structural Biology, 183(3), 484–494.

    Article  CAS  PubMed  Google Scholar 

  13. Powell, B. C., & Rogers, G. E. (1997). The role of keratin proteins and their genes in the growth, structure and properties of hair. In Formation and structure of human hair (pp. 59–148). Basel: Birkhäuser Verlag.

    Chapter  Google Scholar 

  14. Horio, M., & Kondo, T. (1953). Crimping of wool fibers. Textile Research Journal, 23(6), 373–387.

    Article  CAS  Google Scholar 

  15. Fraser, R. D. B., & MacRae, T. P. (1956). The distribution of ortho- and para-cortical cells in wool and mohair. Textile Research Journal, 26, 618–619.

    Article  Google Scholar 

  16. Fratini, A., Powell, B. C., & Rogers, G. E. (1993). Sequence, expression, and evolutionary conservation of a gene encoding a glycine/tyrosine-rich keratin-associated protein of hair. Journal of Biological Chemistry, 268(6), 4511–4518.

    CAS  PubMed  Google Scholar 

  17. Fratini, A., et al. (1994). Dietary cysteine regulates the levels of mRNAs encoding a family of cysteine-rich proteins of wool. Journal of Investigative Dermatology, 102(2), 178–185.

    Article  CAS  PubMed  Google Scholar 

  18. Yu, Z., et al. (2009). Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles. Differentiation, 77(3), 307–316.

    Article  PubMed  Google Scholar 

  19. Powell, B. C., Arthur, J. R., & Nesci, A. (1995). Characterisation of a gene encoding a cysteine-rich keratin associated protein synthesised late in rabbit hair follicle differentiation. Differentiation, 58, 227–232.

    Article  CAS  PubMed  Google Scholar 

  20. Parry, D. A. D., Fraser, R. D. B., & MacRae, T. P. (1979). Repeating patterns of amino acid residues in the sequences of some high sulphur proteins from α-keratin. International Journal of Biological Macromolecules, 1, 17–22.

    Article  CAS  Google Scholar 

  21. Fraser, R. D. B., et al. (1988). Disulphide bonding in α-keratin. International Journal of Biological Macromolecules, 10, 106–112.

    Article  CAS  Google Scholar 

  22. Betzel, C., et al. (1991). The refined crystal structure of alpha-cobratoxin from Naja naja siamensis at 2.4-Å resolution. Journal of Biological Chemistry, 266, 21530–21536.

    Google Scholar 

  23. Fraser, R. D. B., & MacRae, T. P. (1980). Molecular structure and mechanical properties of keratins. In The mechanical properties of biological materials. SEB Symposium XXXXIV: Cambridge University Press.

    Google Scholar 

  24. Fujikawa, H., et al. (2012). Characterization of the human hair keratin-associated protein 2 (KRTAP2) gene family. Journal of Investigative Dermatology, 132(7), 1806–1813.

    Article  CAS  PubMed  Google Scholar 

  25. Filshie, B. K., & Rogers, G. E. (1962). An electron microscope study of the fine structure of feather keratin. Journal of Cell Biology, 13, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fraser, R. D. B., & Parry, D. A. D. (2014). Amino acid sequence homologies in the hard keratins of birds and reptiles, and their implications for molecular structure and physical properties. Journal of Structural Biology, 188, 213–224.

    Article  CAS  PubMed  Google Scholar 

  27. Bullough, P. A., & Tulloch, P. A. (1990). High-resolution spot-scan electron microscopy of microcrystals of an α-helical coiled-coil protein. Journal of Molecular Biology, 215, 161–173.

    Article  CAS  PubMed  Google Scholar 

  28. Fraser, R. D. B., & Parry, D. A. D. (2015). The molecular structure of the silk fibers from Hymenoptera aculeata (bees, wasps, ants). Journal of Structural Biology, 192, 528–538.

    Article  CAS  PubMed  Google Scholar 

  29. Bendit, E. G., & Gillespie, J. M. (1978). The probable role and location of high-glycine-tyrosine proteins in the structure of keratins. Biopolymers, 17, 2743–2745.

    Article  CAS  Google Scholar 

  30. Levitt, M., & Perutz, M. F. (1988). Aromatic rings act as hydrogen-bond acceptors. Journal of Molecular Biology, 201, 751–754.

    Article  CAS  PubMed  Google Scholar 

  31. McGaughey, G. B., Gagne, M., & Rappe, A. K. (1998). π-Stacking interactions alive and well in proteins. Journal of Biological Chemistry, 273, 15458–15463.

    Article  CAS  PubMed  Google Scholar 

  32. Price, V. H., et al. (1980). Trichothiodystrophy. Sulfur-deficient brittle hair as a marker for a neuroectodermal symptom complex. Archiv fur Dermatologische Forschung, 116, 1375–1384.

    CAS  Google Scholar 

  33. Gillespie, J. M., & Marshall, R. C. (1983). A comparison of the proteins of normal and trichothiodystrophic human hair. Journal of Investigative Dermatology, 80, 195–202.

    Article  CAS  PubMed  Google Scholar 

  34. Gold, R. J., & Scriver, C. R. (1972). Properties of hair keratin in an autosomal dominant form of ectodermal dysplasia. American Journal of Human Genetics, 24, 549–561.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. D. Parry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fraser, R.D.B., Parry, D.A.D. (2018). Trichocyte Keratin-Associated Proteins (KAPs). In: Plowman, J., Harland, D., Deb-Choudhury, S. (eds) The Hair Fibre: Proteins, Structure and Development. Advances in Experimental Medicine and Biology, vol 1054. Springer, Singapore. https://doi.org/10.1007/978-981-10-8195-8_7

Download citation

Publish with us

Policies and ethics