Skip to main content

Functional Nucleic Acid Based Biosensors for Noble Metal Ion Detection

  • Chapter
  • First Online:
Functional Nucleic Acid Based Biosensors for Food Safety Detection
  • 697 Accesses

Abstract

There are eight noble metals: gold (Au), silver (Ag) and Platinum Group Metals (PGM) including platinum (Pt), iridium (Ir), palladium (Pd), rhodium (Rh), ruthenium (Ru), and osmium (Os). Many of noble metals have excellent electrical and thermal conductivity properties. They are used for currency and jewelry throughout history, as well as aeronautics, electronic information and pharmaceutics. Human activities, such as mining, burning, and draining, bring contaminant-containing noble metal ions to our surroundings. These metal ions enter our water and food systems via the food chain, resulting in risks to human health. Thus, it is of the utmost importance to analyze metal ions in our environment. Traditional analysis methods based on precise instruments, like atomic absorption/emission and mass spectroscopy, are highly sensitive and accurate but very costly, involve complicated pretreatment, and require trained personnel. Therefore, the traditional methods are unlikely for on-site screening of large samples. To solve these problems and improve on-site detection capabilities, recognition elements for specific metal ions based on functional nucleic acids (FNAs) are receiving widespread attention owing to their high sensitivity, great selectivity, low cost, easy synthesis, smart programming, and ability to combine perfectly with various sensing components. In this chapter, different sensing methods composed of FNAs for signal recognition and sensing components for signal output are reviewed for Ag+, Au+ (Au3+) and Pt2+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.T. Ratte, Bioaccumulation and toxicity of silver compounds: a review. Environ. Toxicol. Chem. 18(1), 89–108 (1999)

    Article  CAS  Google Scholar 

  2. P.L. Drake, K.J. Hazelwood, Exposure-related health effects of silver and silver compounds: a review. Ann. Occup. Hyg. 49(7), 575–585 (2005)

    PubMed  CAS  Google Scholar 

  3. R. Saran, J. Liu, A silver DNAzyme. Anal. Chem. 88(7), 4014–4020 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. R. Saran, K. Kleinke, W. Zhou, T. Yu, J. Liu, A silver-specific DNAzyme with a new silver aptamer and salt-promoted activity. Biochemistry 56(14), 1955–1962 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. J. Müller, Functional metal ions in nucleic acids. Metallomics 2(5), 318–327 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. J. Schnabl, R.K. Sigel, Controlling ribozyme activity by metal ions. Curr. Opin. Chem. Biol. 14(2), 269–275 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. A. Ono, S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto, Y. Tanaka, Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem. Commun. 39(39), 4825 (2008)

    Article  CAS  Google Scholar 

  8. A.T. Phan, V. Kuryavyi, D.J. Patel, DNA architecture: from G to. Z. Curr. Opin. Struc. Biol. 16(3), 288–298 (2006)

    Article  CAS  Google Scholar 

  9. X.H. Zhou, D.M. Kong, H.X. Shen, Ag+ and cysteine quantitation based on G-quadruplex− hemin DNAzymes disruption by Ag+. Anal. Chem. 82(3), 789–793 (2009)

    Google Scholar 

  10. K. Gehring, J.L. Leroy, M. Guéron, A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature 363(6429), 561–565 (1993)

    Article  CAS  PubMed  Google Scholar 

  11. A. Dembska, The analytical and biomedical potential of cytosine-rich oligonucleotides: a review. Anal. Chim. Acta 930, 1–12 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. H.A. Day, C. Huguin, Z.A. Waller, Silver cations fold i-motif at neutral pH. Chem. Commun. 49(70), 7696–7698 (2013)

    Article  CAS  Google Scholar 

  13. P. Travascio, Y. Li, D. Sen, DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. biol. 5(9), 505–517 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. D.M. Kong, L.L. Cai, H.X. Shen, Quantitative detection of Ag+ and cysteine using G-quadruplex–hemin DNAzymes. Analyst 135(6), 1253–1258 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. J. Huang, X. Su, Z. Li, Metal ion detection using functional nucleic acids and nanomaterials. Biosens. Bioelectron. 96, 127–139 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. H. Xi, M. Cui, W. Li, Z. Chen, Colorimetric detection of Ag+ based on C-Ag+-C binding as a bridge between gold nanoparticles. Sensors Actuators B Chem. 250, 641–646 (2017)

    Google Scholar 

  17. Y. Zhang, M. Li, H. Liu, S. Ge, J. Yu, Label-free colorimetric logic gates based on free gold nanoparticles and the coordination strategy between cytosine and silver ions. New J. Chem. 40(6), 5516–5522 (2016)

    Article  CAS  Google Scholar 

  18. A. Safavi, R. Ahmadi, Z. Mohammadpour, Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles. Sensors Actuators B Chem. 242, 609–615 (2017)

    Article  CAS  Google Scholar 

  19. B. Liu, H. Tan, Y. Chen, Visual detection of silver(I) ions by a chromogenic reaction catalyzed by gold nanoparticles. Microchim. Acta 180(5–6), 331–339 (2013)

    Article  CAS  Google Scholar 

  20. W. Zhai, C. Wang, P. Yu, Y. Wang, L. Mao, Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal. Chem. 86(24), 12206–12213 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. X. Liu, Q. Wang, H. Zhao, L. Zhang, Y. Su, Y. Lv, BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137(19), 4552–4558 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. J. Liu, L. Meng, Z. Fei, P.J. Dyson, X. Jing, X. Liu, MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens. Bioelectron. 90, 69–74 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. L. He, Y. Lu, F. Wang, W. Jing, Y. Chen, Y. Liu, Colorimetric sensing of silver ions based on glutathione-mediated MnO2 nanosheets. Sensors Actuators B Chem. 254, 468–474 (2017)

    Article  CAS  Google Scholar 

  24. B.M. Wile, K. Ban, Y.S. Yoon, G. Bao, Molecular beacon–enabled purification of living cells by targeting cell type–specific mRNAs. Nat. Protoc. 9(10), 2411–2424 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Bi, B. Ji, Z. Zhang, J.J. Zhu, Metal ions triggered ligase activity for rolling circle amplification and its application in molecular logic gate operations. Chem. Sci. 4(4), 1858–1863 (2013)

    Article  CAS  Google Scholar 

  26. K.J. Livak, S. Flood, J. Marmaro, W. Giusti, K. Deetz, Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Res. 4(6), 357–362 (1995)

    Article  CAS  Google Scholar 

  27. N. Cheng, P. Zhu, Y. Xu, K. Huang, Y. Luo, Z. Yang, W. Xu, High-sensitivity assay for Hg (II) and Ag (I) ion detection: a new class of droplet digital PCR logic gates for an intelligent DNA calculator. Biosens. Bioelectron. 84(15), 1 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. G. Zhu, Y. Li, C.Y. Zhang, Simultaneous detection of mercury (II) and silver (I) ions with picomolar sensitivity. Chem. Commun. 50(5), 572–574 (2014)

    Article  CAS  Google Scholar 

  29. Y. Xiao, V. Pavlov, R. Gill, T. Bourenko, I. Willner, Lighting up Biochemiluminescence by the surface self-assembly of DNA–hemin complexes. Chembiochem 5(3), 374–379 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. T. Li, B. Li, E. Wang, S. Dong, G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye. Chem. Commun. 24, 3551–3553 (2009)

    Article  CAS  Google Scholar 

  31. J.H. Guo, D.M. Kong, H.X. Shen, Design of a fluorescent DNA IMPLICATION logic gate and detection of Ag+ and cysteine with triphenylmethane dye/G-quadruplex complexes. Biosens. Bioelectron. 26(2), 327–332 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. Y.J. Lu, N. Ma, Y.J. Li, Z.Y. Lin, B. Qiu, G.N. Chen, K.Y. Wong, Styryl quinolinium/G-quadruplex complex for dual-channel fluorescent sensing of Ag+ and cysteine. Sensors Actuators B Chem. 173, 295–299 (2012)

    Article  CAS  Google Scholar 

  33. B.H. Kang, Z.F. Gao, N. Li, Y. Shi, N.B. Li, H.Q. Luo, Thiazole orange as a fluorescent probe: label-free and selective detection of silver ions based on the structural change of i-motif DNA at neutral pH. Talanta 156, 141–146 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. S.O. Kelley, J.K. Barton, Electron transfer between bases in double helical DNA. Science 283(5400), 375–381 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. E.L. Rachofsky, E. Seibert, J.T. Stivers, R. Osman, J.A. Ross, Conformation and dynamics of abasic sites in DNA investigated by time-resolved fluorescence of 2-aminopurine. Biochemistry 40(4), 957–967 (2001)

    Article  CAS  PubMed  Google Scholar 

  36. W. Zhou, J. Ding, J. Liu, 2-aminopurine-modified DNA homopolymers for robust and sensitive detection of mercury and silver. Biosens. Bioelectron. 87, 171–177 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. L.M. Wilhelmsson, Fluorescent nucleic acid base analogues. Q. Rev. Biophys. 43(2), 159–183 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. K.S. Park, J.Y. Lee, H.G. Park, Mismatched pyrrolo-dC-modified duplex DNA as a novel probe for sensitive detection of silver ions. Chem. Commun. 48(38), 4549–4551 (2012)

    Article  CAS  Google Scholar 

  39. J.L. Hammond, N. Formisano, P. Estrela, S. Carrara, J. Tkac, Electrochemical biosensors and nanobiosensors. Essays Biochem. 60(1), 69–80 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  40. Y. Zhang, H. Li, J. Xie, M. Chen, D. Zhang, P. Pang, H. Wang, Z. Wu, W. Yang, Electrochemical biosensor for silver ions based on amplification of DNA–Au bio–bar codes and silver enhancement. J. Electroanal. Chem. 785, 117–124 (2017)

    Article  CAS  Google Scholar 

  41. Y. Zhang, H. Li, M. Chen, X. Fang, P. Pang, H. Wang, Z. Wu, W. Yang, Ultrasensitive electrochemical biosensor for silver ion based on magnetic nanoparticles labeling with hybridization chain reaction amplification strategy. Sensors Actuators B Chem. 249, 431–438 (2017)

    Article  CAS  Google Scholar 

  42. G. Xu, G. Wang, X. He, Y. Zhu, L. Chen, X. Zhang, An ultrasensitive electrochemical method for detection of Ag+ based on cyclic amplification of exonuclease III activity on cytosine–Ag+−cytosine. Analyst 138(22), 6900–6906 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  CAS  Google Scholar 

  44. Z. Liu, B. Liu, J. Ding, J. Liu, Fluorescent sensors using DNA-functionalized graphene oxide. Anal. Bioanal. Chem. 406(27), 6885–6902 (2014)

    Article  CAS  PubMed  Google Scholar 

  45. W.Y. Xie, W.T. Huang, N.B. Li, H.Q. Luo, Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chem. Commun. 48(1), 82–84 (2012)

    Article  CAS  Google Scholar 

  46. Y. Wen, F. Xing, S. He, S. Song, L. Wang, Y. Long, D. Li, C. Fan, A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem. Commun. 46(15), 2596–2598 (2010)

    Article  CAS  Google Scholar 

  47. X. Gao, Y. Lu, R. Zhang, S. He, J. Ju, M. Liu, L. Li, W. Chen, One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J. Mater. Chem. C 3(10), 2302–2309 (2015)

    Article  CAS  Google Scholar 

  48. S. Bian, C. Shen, Y. Qian, J. Liu, F. Xi, X. Dong, Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sensors Actuators B Chem. 242, 231–237 (2017)

    Article  CAS  Google Scholar 

  49. A. Cayuela, M.L. Soriano, S.R. Kennedy, J. Steed, M. Valcárcel, Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta 151, 100–105 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. S. Cai, X. Tian, L. Sun, et al., Platinum(II)-Oligonucleotide coordination based aptasensor for simple and selective detection of platinum compounds. Anal. Chem. 87(20), 10542–10546 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. D. Zhao, J. Li, T. Yang, Z. He, “Turn off–on” fluorescent sensor for platinum drugs-DNA interactions based on quantum dots. Biosens. Bioelectron. 52, 29–35 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. S. Cai, X. Tian, L. Sun, H. Hu, S. Zheng, H. Jiang, L. Yu, S. Zeng, Platinum (II)-oligonucleotide coordination based aptasensor for simple and selective detection of platinum compounds. Anal. Chem. 87(20), 10542–10546 (2015)

    Article  CAS  PubMed  Google Scholar 

  53. J.F. Zhang, Y. Zhou, J. Yoon, J.S. Kim, Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem. Soc. Rev. 40(7), 3416–3429 (2011)

    Article  CAS  PubMed  Google Scholar 

  54. S. Singha, D. Kim, H. Seo, S.W. Cho, K.H. Ahn, Fluorescence sensing systems for gold and silver species. Chem. Soc. Rev. 44(13), 4367–4399 (2015)

    Article  CAS  PubMed  Google Scholar 

  55. H.K. Suda, D.Y. Petrovykh, M.J. Tarlov, L.J. Whitman, Base-dependent competitive adsorption of single-stranded DNA on gold. J. Am. Chem. Soc. 125(30), 9014–9015 (2003)

    Article  CAS  PubMed  Google Scholar 

  56. F. Wang, B. Liu, P.J.J. Huang, J. Liu, Rationally designed nucleobase and nucleotide coordinated nanoparticles for selective DNA adsorption and detection. Anal. Chem. 85(24), 12144–12151 (2013)

    Article  CAS  PubMed  Google Scholar 

  57. Y. Wu, R.Y. Lai, Electrochemical gold (III) sensor with high sensitivity and tunable dynamic range. Anal. Chem. 88(4), 2227–2233 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y. (2018). Functional Nucleic Acid Based Biosensors for Noble Metal Ion Detection. In: Functional Nucleic Acid Based Biosensors for Food Safety Detection. Springer, Singapore. https://doi.org/10.1007/978-981-10-8219-1_6

Download citation

Publish with us

Policies and ethics